Metamath Proof Explorer


Theorem cusgrsizeindslem

Description: Lemma for cusgrsizeinds . (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020)

Ref Expression
Hypotheses cusgrsizeindb0.v V=VtxG
cusgrsizeindb0.e E=EdgG
Assertion cusgrsizeindslem GComplUSGraphVFinNVeE|Ne=V1

Proof

Step Hyp Ref Expression
1 cusgrsizeindb0.v V=VtxG
2 cusgrsizeindb0.e E=EdgG
3 cusgrcplgr GComplUSGraphGComplGraph
4 1 nbcplgr GComplGraphNVGNeighbVtxN=VN
5 3 4 sylan GComplUSGraphNVGNeighbVtxN=VN
6 5 3adant2 GComplUSGraphVFinNVGNeighbVtxN=VN
7 6 fveq2d GComplUSGraphVFinNVGNeighbVtxN=VN
8 cusgrusgr GComplUSGraphGUSGraph
9 8 anim1i GComplUSGraphNVGUSGraphNV
10 9 3adant2 GComplUSGraphVFinNVGUSGraphNV
11 1 2 nbusgrf1o GUSGraphNVff:GNeighbVtxN1-1 ontoeE|Ne
12 10 11 syl GComplUSGraphVFinNVff:GNeighbVtxN1-1 ontoeE|Ne
13 1 2 nbusgr GUSGraphGNeighbVtxN=nV|NnE
14 8 13 syl GComplUSGraphGNeighbVtxN=nV|NnE
15 14 adantr GComplUSGraphVFinGNeighbVtxN=nV|NnE
16 rabfi VFinnV|NnEFin
17 16 adantl GComplUSGraphVFinnV|NnEFin
18 15 17 eqeltrd GComplUSGraphVFinGNeighbVtxNFin
19 18 3adant3 GComplUSGraphVFinNVGNeighbVtxNFin
20 8 anim1i GComplUSGraphVFinGUSGraphVFin
21 1 isfusgr GFinUSGraphGUSGraphVFin
22 20 21 sylibr GComplUSGraphVFinGFinUSGraph
23 fusgrfis GFinUSGraphEdgGFin
24 2 23 eqeltrid GFinUSGraphEFin
25 rabfi EFineE|NeFin
26 24 25 syl GFinUSGrapheE|NeFin
27 22 26 syl GComplUSGraphVFineE|NeFin
28 27 3adant3 GComplUSGraphVFinNVeE|NeFin
29 hasheqf1o GNeighbVtxNFineE|NeFinGNeighbVtxN=eE|Neff:GNeighbVtxN1-1 ontoeE|Ne
30 19 28 29 syl2anc GComplUSGraphVFinNVGNeighbVtxN=eE|Neff:GNeighbVtxN1-1 ontoeE|Ne
31 12 30 mpbird GComplUSGraphVFinNVGNeighbVtxN=eE|Ne
32 hashdifsn VFinNVVN=V1
33 32 3adant1 GComplUSGraphVFinNVVN=V1
34 7 31 33 3eqtr3d GComplUSGraphVFinNVeE|Ne=V1