Metamath Proof Explorer


Theorem cvrval5

Description: Binary relation expressing X covers X ./\ Y . (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses cvrval5.b B=BaseK
cvrval5.l ˙=K
cvrval5.j ˙=joinK
cvrval5.m ˙=meetK
cvrval5.c C=K
cvrval5.a A=AtomsK
Assertion cvrval5 KHLXBYBX˙YCXpA¬p˙Yp˙X˙Y=X

Proof

Step Hyp Ref Expression
1 cvrval5.b B=BaseK
2 cvrval5.l ˙=K
3 cvrval5.j ˙=joinK
4 cvrval5.m ˙=meetK
5 cvrval5.c C=K
6 cvrval5.a A=AtomsK
7 simp1 KHLXBYBKHL
8 hllat KHLKLat
9 1 4 latmcl KLatXBYBX˙YB
10 8 9 syl3an1 KHLXBYBX˙YB
11 simp2 KHLXBYBXB
12 1 2 3 5 6 cvrval3 KHLX˙YBXBX˙YCXpA¬p˙X˙YX˙Y˙p=X
13 7 10 11 12 syl3anc KHLXBYBX˙YCXpA¬p˙X˙YX˙Y˙p=X
14 8 3ad2ant1 KHLXBYBKLat
15 14 ad2antrr KHLXBYBpAX˙Y˙p=XKLat
16 10 ad2antrr KHLXBYBpAX˙Y˙p=XX˙YB
17 1 6 atbase pApB
18 17 ad2antlr KHLXBYBpAX˙Y˙p=XpB
19 1 2 3 latlej2 KLatX˙YBpBp˙X˙Y˙p
20 15 16 18 19 syl3anc KHLXBYBpAX˙Y˙p=Xp˙X˙Y˙p
21 simpr KHLXBYBpAX˙Y˙p=XX˙Y˙p=X
22 20 21 breqtrd KHLXBYBpAX˙Y˙p=Xp˙X
23 22 biantrurd KHLXBYBpAX˙Y˙p=Xp˙Yp˙Xp˙Y
24 simpll2 KHLXBYBpAX˙Y˙p=XXB
25 simpll3 KHLXBYBpAX˙Y˙p=XYB
26 1 2 4 latlem12 KLatpBXBYBp˙Xp˙Yp˙X˙Y
27 15 18 24 25 26 syl13anc KHLXBYBpAX˙Y˙p=Xp˙Xp˙Yp˙X˙Y
28 23 27 bitr2d KHLXBYBpAX˙Y˙p=Xp˙X˙Yp˙Y
29 28 notbid KHLXBYBpAX˙Y˙p=X¬p˙X˙Y¬p˙Y
30 29 ex KHLXBYBpAX˙Y˙p=X¬p˙X˙Y¬p˙Y
31 30 pm5.32rd KHLXBYBpA¬p˙X˙YX˙Y˙p=X¬p˙YX˙Y˙p=X
32 14 adantr KHLXBYBpAKLat
33 10 adantr KHLXBYBpAX˙YB
34 17 adantl KHLXBYBpApB
35 1 3 latjcom KLatX˙YBpBX˙Y˙p=p˙X˙Y
36 32 33 34 35 syl3anc KHLXBYBpAX˙Y˙p=p˙X˙Y
37 36 eqeq1d KHLXBYBpAX˙Y˙p=Xp˙X˙Y=X
38 37 anbi2d KHLXBYBpA¬p˙YX˙Y˙p=X¬p˙Yp˙X˙Y=X
39 31 38 bitrd KHLXBYBpA¬p˙X˙YX˙Y˙p=X¬p˙Yp˙X˙Y=X
40 39 rexbidva KHLXBYBpA¬p˙X˙YX˙Y˙p=XpA¬p˙Yp˙X˙Y=X
41 13 40 bitrd KHLXBYBX˙YCXpA¬p˙Yp˙X˙Y=X