Metamath Proof Explorer


Theorem cxpaddle

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses cxpaddle.1 φ A
cxpaddle.2 φ 0 A
cxpaddle.3 φ B
cxpaddle.4 φ 0 B
cxpaddle.5 φ C +
cxpaddle.6 φ C 1
Assertion cxpaddle φ A + B C A C + B C

Proof

Step Hyp Ref Expression
1 cxpaddle.1 φ A
2 cxpaddle.2 φ 0 A
3 cxpaddle.3 φ B
4 cxpaddle.4 φ 0 B
5 cxpaddle.5 φ C +
6 cxpaddle.6 φ C 1
7 1 3 readdcld φ A + B
8 1 3 2 4 addge0d φ 0 A + B
9 5 rpred φ C
10 7 8 9 recxpcld φ A + B C
11 10 adantr φ 0 < A + B A + B C
12 11 recnd φ 0 < A + B A + B C
13 12 mulid2d φ 0 < A + B 1 A + B C = A + B C
14 1 adantr φ 0 < A + B A
15 7 anim1i φ 0 < A + B A + B 0 < A + B
16 elrp A + B + A + B 0 < A + B
17 15 16 sylibr φ 0 < A + B A + B +
18 14 17 rerpdivcld φ 0 < A + B A A + B
19 3 adantr φ 0 < A + B B
20 19 17 rerpdivcld φ 0 < A + B B A + B
21 2 adantr φ 0 < A + B 0 A
22 7 adantr φ 0 < A + B A + B
23 simpr φ 0 < A + B 0 < A + B
24 divge0 A 0 A A + B 0 < A + B 0 A A + B
25 14 21 22 23 24 syl22anc φ 0 < A + B 0 A A + B
26 9 adantr φ 0 < A + B C
27 18 25 26 recxpcld φ 0 < A + B A A + B C
28 4 adantr φ 0 < A + B 0 B
29 divge0 B 0 B A + B 0 < A + B 0 B A + B
30 19 28 22 23 29 syl22anc φ 0 < A + B 0 B A + B
31 20 30 26 recxpcld φ 0 < A + B B A + B C
32 1 3 addge01d φ 0 B A A + B
33 4 32 mpbid φ A A + B
34 33 adantr φ 0 < A + B A A + B
35 22 recnd φ 0 < A + B A + B
36 35 mulid1d φ 0 < A + B A + B 1 = A + B
37 34 36 breqtrrd φ 0 < A + B A A + B 1
38 1red φ 0 < A + B 1
39 ledivmul A 1 A + B 0 < A + B A A + B 1 A A + B 1
40 14 38 22 23 39 syl112anc φ 0 < A + B A A + B 1 A A + B 1
41 37 40 mpbird φ 0 < A + B A A + B 1
42 5 adantr φ 0 < A + B C +
43 6 adantr φ 0 < A + B C 1
44 18 25 41 42 43 cxpaddlelem φ 0 < A + B A A + B A A + B C
45 3 1 addge02d φ 0 A B A + B
46 2 45 mpbid φ B A + B
47 46 adantr φ 0 < A + B B A + B
48 47 36 breqtrrd φ 0 < A + B B A + B 1
49 ledivmul B 1 A + B 0 < A + B B A + B 1 B A + B 1
50 19 38 22 23 49 syl112anc φ 0 < A + B B A + B 1 B A + B 1
51 48 50 mpbird φ 0 < A + B B A + B 1
52 20 30 51 42 43 cxpaddlelem φ 0 < A + B B A + B B A + B C
53 18 20 27 31 44 52 le2addd φ 0 < A + B A A + B + B A + B A A + B C + B A + B C
54 14 recnd φ 0 < A + B A
55 19 recnd φ 0 < A + B B
56 17 rpne0d φ 0 < A + B A + B 0
57 54 55 35 56 divdird φ 0 < A + B A + B A + B = A A + B + B A + B
58 35 56 dividd φ 0 < A + B A + B A + B = 1
59 57 58 eqtr3d φ 0 < A + B A A + B + B A + B = 1
60 9 recnd φ C
61 60 adantr φ 0 < A + B C
62 14 21 17 61 divcxpd φ 0 < A + B A A + B C = A C A + B C
63 19 28 17 61 divcxpd φ 0 < A + B B A + B C = B C A + B C
64 62 63 oveq12d φ 0 < A + B A A + B C + B A + B C = A C A + B C + B C A + B C
65 1 2 9 recxpcld φ A C
66 65 recnd φ A C
67 66 adantr φ 0 < A + B A C
68 3 4 9 recxpcld φ B C
69 68 recnd φ B C
70 69 adantr φ 0 < A + B B C
71 17 26 rpcxpcld φ 0 < A + B A + B C +
72 71 rpne0d φ 0 < A + B A + B C 0
73 67 70 12 72 divdird φ 0 < A + B A C + B C A + B C = A C A + B C + B C A + B C
74 64 73 eqtr4d φ 0 < A + B A A + B C + B A + B C = A C + B C A + B C
75 53 59 74 3brtr3d φ 0 < A + B 1 A C + B C A + B C
76 65 68 readdcld φ A C + B C
77 76 adantr φ 0 < A + B A C + B C
78 38 77 71 lemuldivd φ 0 < A + B 1 A + B C A C + B C 1 A C + B C A + B C
79 75 78 mpbird φ 0 < A + B 1 A + B C A C + B C
80 13 79 eqbrtrrd φ 0 < A + B A + B C A C + B C
81 5 rpne0d φ C 0
82 60 81 0cxpd φ 0 C = 0
83 1 2 9 cxpge0d φ 0 A C
84 3 4 9 cxpge0d φ 0 B C
85 65 68 83 84 addge0d φ 0 A C + B C
86 82 85 eqbrtrd φ 0 C A C + B C
87 oveq1 0 = A + B 0 C = A + B C
88 87 breq1d 0 = A + B 0 C A C + B C A + B C A C + B C
89 86 88 syl5ibcom φ 0 = A + B A + B C A C + B C
90 89 imp φ 0 = A + B A + B C A C + B C
91 0re 0
92 leloe 0 A + B 0 A + B 0 < A + B 0 = A + B
93 91 7 92 sylancr φ 0 A + B 0 < A + B 0 = A + B
94 8 93 mpbid φ 0 < A + B 0 = A + B
95 80 90 94 mpjaodan φ A + B C A C + B C