Metamath Proof Explorer


Theorem abscxpbnd

Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses abscxpbnd.1 φ A
abscxpbnd.2 φ B
abscxpbnd.3 φ 0 B
abscxpbnd.4 φ M
abscxpbnd.5 φ A M
Assertion abscxpbnd φ A B M B e B π

Proof

Step Hyp Ref Expression
1 abscxpbnd.1 φ A
2 abscxpbnd.2 φ B
3 abscxpbnd.3 φ 0 B
4 abscxpbnd.4 φ M
5 abscxpbnd.5 φ A M
6 1le1 1 1
7 6 a1i φ A = 0 B = 0 1 1
8 oveq12 A = 0 B = 0 A B = 0 0
9 8 adantll φ A = 0 B = 0 A B = 0 0
10 0cn 0
11 cxp0 0 0 0 = 1
12 10 11 ax-mp 0 0 = 1
13 9 12 eqtrdi φ A = 0 B = 0 A B = 1
14 13 fveq2d φ A = 0 B = 0 A B = 1
15 abs1 1 = 1
16 14 15 eqtrdi φ A = 0 B = 0 A B = 1
17 fveq2 B = 0 B = 0
18 re0 0 = 0
19 17 18 eqtrdi B = 0 B = 0
20 19 oveq2d B = 0 M B = M 0
21 4 recnd φ M
22 21 cxp0d φ M 0 = 1
23 22 adantr φ A = 0 M 0 = 1
24 20 23 sylan9eqr φ A = 0 B = 0 M B = 1
25 simpr φ A = 0 B = 0 B = 0
26 25 abs00bd φ A = 0 B = 0 B = 0
27 26 oveq1d φ A = 0 B = 0 B π = 0 π
28 picn π
29 28 mul02i 0 π = 0
30 27 29 eqtrdi φ A = 0 B = 0 B π = 0
31 30 fveq2d φ A = 0 B = 0 e B π = e 0
32 ef0 e 0 = 1
33 31 32 eqtrdi φ A = 0 B = 0 e B π = 1
34 24 33 oveq12d φ A = 0 B = 0 M B e B π = 1 1
35 1t1e1 1 1 = 1
36 34 35 eqtrdi φ A = 0 B = 0 M B e B π = 1
37 7 16 36 3brtr4d φ A = 0 B = 0 A B M B e B π
38 simplr φ A = 0 B 0 A = 0
39 38 oveq1d φ A = 0 B 0 A B = 0 B
40 2 adantr φ A = 0 B
41 0cxp B B 0 0 B = 0
42 40 41 sylan φ A = 0 B 0 0 B = 0
43 39 42 eqtrd φ A = 0 B 0 A B = 0
44 43 abs00bd φ A = 0 B 0 A B = 0
45 0red φ 0
46 1 abscld φ A
47 1 absge0d φ 0 A
48 45 46 4 47 5 letrd φ 0 M
49 2 recld φ B
50 4 48 49 recxpcld φ M B
51 50 ad2antrr φ A = 0 B 0 M B
52 2 abscld φ B
53 52 ad2antrr φ A = 0 B 0 B
54 pire π
55 remulcl B π B π
56 53 54 55 sylancl φ A = 0 B 0 B π
57 56 reefcld φ A = 0 B 0 e B π
58 4 48 49 cxpge0d φ 0 M B
59 58 ad2antrr φ A = 0 B 0 0 M B
60 56 rpefcld φ A = 0 B 0 e B π +
61 60 rpge0d φ A = 0 B 0 0 e B π
62 51 57 59 61 mulge0d φ A = 0 B 0 0 M B e B π
63 44 62 eqbrtrd φ A = 0 B 0 A B M B e B π
64 37 63 pm2.61dane φ A = 0 A B M B e B π
65 1 adantr φ A 0 A
66 simpr φ A 0 A 0
67 2 adantr φ A 0 B
68 65 66 67 cxpefd φ A 0 A B = e B log A
69 68 fveq2d φ A 0 A B = e B log A
70 logcl A A 0 log A
71 1 70 sylan φ A 0 log A
72 67 71 mulcld φ A 0 B log A
73 absef B log A e B log A = e B log A
74 72 73 syl φ A 0 e B log A = e B log A
75 67 recld φ A 0 B
76 71 recld φ A 0 log A
77 75 76 remulcld φ A 0 B log A
78 77 recnd φ A 0 B log A
79 67 imcld φ A 0 B
80 71 imcld φ A 0 log A
81 80 renegcld φ A 0 log A
82 79 81 remulcld φ A 0 B log A
83 82 recnd φ A 0 B log A
84 efadd B log A B log A e B log A + B log A = e B log A e B log A
85 78 83 84 syl2anc φ A 0 e B log A + B log A = e B log A e B log A
86 79 80 remulcld φ A 0 B log A
87 86 recnd φ A 0 B log A
88 78 87 negsubd φ A 0 B log A + B log A = B log A B log A
89 79 recnd φ A 0 B
90 80 recnd φ A 0 log A
91 89 90 mulneg2d φ A 0 B log A = B log A
92 91 oveq2d φ A 0 B log A + B log A = B log A + B log A
93 67 71 remuld φ A 0 B log A = B log A B log A
94 88 92 93 3eqtr4d φ A 0 B log A + B log A = B log A
95 94 fveq2d φ A 0 e B log A + B log A = e B log A
96 relog A A 0 log A = log A
97 1 96 sylan φ A 0 log A = log A
98 97 oveq2d φ A 0 B log A = B log A
99 98 fveq2d φ A 0 e B log A = e B log A
100 46 recnd φ A
101 100 adantr φ A 0 A
102 1 abs00ad φ A = 0 A = 0
103 102 necon3bid φ A 0 A 0
104 103 biimpar φ A 0 A 0
105 75 recnd φ A 0 B
106 101 104 105 cxpefd φ A 0 A B = e B log A
107 99 106 eqtr4d φ A 0 e B log A = A B
108 107 oveq1d φ A 0 e B log A e B log A = A B e B log A
109 85 95 108 3eqtr3d φ A 0 e B log A = A B e B log A
110 69 74 109 3eqtrd φ A 0 A B = A B e B log A
111 65 abscld φ A 0 A
112 65 absge0d φ A 0 0 A
113 111 112 75 recxpcld φ A 0 A B
114 82 reefcld φ A 0 e B log A
115 113 114 remulcld φ A 0 A B e B log A
116 50 adantr φ A 0 M B
117 116 114 remulcld φ A 0 M B e B log A
118 52 54 55 sylancl φ B π
119 118 reefcld φ e B π
120 119 adantr φ A 0 e B π
121 116 120 remulcld φ A 0 M B e B π
122 82 rpefcld φ A 0 e B log A +
123 122 rpge0d φ A 0 0 e B log A
124 4 adantr φ A 0 M
125 3 adantr φ A 0 0 B
126 5 adantr φ A 0 A M
127 111 112 124 75 125 126 cxple2ad φ A 0 A B M B
128 113 116 114 123 127 lemul1ad φ A 0 A B e B log A M B e B log A
129 58 adantr φ A 0 0 M B
130 89 abscld φ A 0 B
131 81 recnd φ A 0 log A
132 131 abscld φ A 0 log A
133 130 132 remulcld φ A 0 B log A
134 118 adantr φ A 0 B π
135 82 leabsd φ A 0 B log A B log A
136 89 131 absmuld φ A 0 B log A = B log A
137 135 136 breqtrd φ A 0 B log A B log A
138 67 abscld φ A 0 B
139 138 132 remulcld φ A 0 B log A
140 131 absge0d φ A 0 0 log A
141 absimle B B B
142 67 141 syl φ A 0 B B
143 130 138 132 140 142 lemul1ad φ A 0 B log A B log A
144 54 a1i φ A 0 π
145 67 absge0d φ A 0 0 B
146 90 absnegd φ A 0 log A = log A
147 logimcl A A 0 π < log A log A π
148 1 147 sylan φ A 0 π < log A log A π
149 148 simpld φ A 0 π < log A
150 54 renegcli π
151 ltle π log A π < log A π log A
152 150 80 151 sylancr φ A 0 π < log A π log A
153 149 152 mpd φ A 0 π log A
154 148 simprd φ A 0 log A π
155 absle log A π log A π π log A log A π
156 80 54 155 sylancl φ A 0 log A π π log A log A π
157 153 154 156 mpbir2and φ A 0 log A π
158 146 157 eqbrtrd φ A 0 log A π
159 132 144 138 145 158 lemul2ad φ A 0 B log A B π
160 133 139 134 143 159 letrd φ A 0 B log A B π
161 82 133 134 137 160 letrd φ A 0 B log A B π
162 efle B log A B π B log A B π e B log A e B π
163 82 134 162 syl2anc φ A 0 B log A B π e B log A e B π
164 161 163 mpbid φ A 0 e B log A e B π
165 114 120 116 129 164 lemul2ad φ A 0 M B e B log A M B e B π
166 115 117 121 128 165 letrd φ A 0 A B e B log A M B e B π
167 110 166 eqbrtrd φ A 0 A B M B e B π
168 64 167 pm2.61dane φ A B M B e B π