| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
|
| 2 |
|
n0rex |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
simprll |
|
| 6 |
|
simprlr |
|
| 7 |
|
simpl |
|
| 8 |
|
2fveq3 |
|
| 9 |
8
|
imaeq2d |
|
| 10 |
9
|
fveq2d |
|
| 11 |
10
|
cbvmptv |
|
| 12 |
|
cycliswlk |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
13
|
adantl |
|
| 15 |
3 4 5 6 7 11 14
|
upgrimwlklen |
|
| 16 |
|
simprrl |
|
| 17 |
3 4 5 6 7 11 16
|
upgrimcycls |
|
| 18 |
|
simp3 |
|
| 19 |
|
simp2r |
|
| 20 |
|
simprrr |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
|
vex |
|
| 24 |
|
vex |
|
| 25 |
23 24
|
coex |
|
| 26 |
|
vex |
|
| 27 |
26
|
dmex |
|
| 28 |
27
|
mptex |
|
| 29 |
|
breq12 |
|
| 30 |
29
|
ancoms |
|
| 31 |
|
fveqeq2 |
|
| 32 |
31
|
adantl |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
25 28 33
|
spc2ev |
|
| 35 |
18 22 34
|
syl2anc |
|
| 36 |
15 17 35
|
mpd3an23 |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
rexlimivw |
|
| 39 |
2 38
|
syl |
|
| 40 |
1 39
|
sylbi |
|
| 41 |
40
|
expdcom |
|
| 42 |
41
|
exlimdvv |
|
| 43 |
42
|
imp |
|
| 44 |
|
breq12 |
|
| 45 |
44
|
ancoms |
|
| 46 |
|
fveqeq2 |
|
| 47 |
46
|
adantl |
|
| 48 |
45 47
|
anbi12d |
|
| 49 |
48
|
cbvex2vw |
|
| 50 |
43 49
|
imbitrrdi |
|
| 51 |
50
|
con3d |
|
| 52 |
51
|
expimpd |
|