Metamath Proof Explorer


Theorem cycsubgcl

Description: The set of integer powers of an element A of a group forms a subgroup containing A , called the cyclic group generated by the element A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x X=BaseG
cycsubg.t ·˙=G
cycsubg.f F=xx·˙A
Assertion cycsubgcl GGrpAXranFSubGrpGAranF

Proof

Step Hyp Ref Expression
1 cycsubg.x X=BaseG
2 cycsubg.t ·˙=G
3 cycsubg.f F=xx·˙A
4 1 2 mulgcl GGrpxAXx·˙AX
5 4 3expa GGrpxAXx·˙AX
6 5 an32s GGrpAXxx·˙AX
7 6 3 fmptd GGrpAXF:X
8 7 frnd GGrpAXranFX
9 7 ffnd GGrpAXFFn
10 1z 1
11 fnfvelrn FFn1F1ranF
12 9 10 11 sylancl GGrpAXF1ranF
13 12 ne0d GGrpAXranF
14 df-3an mnAXmnAX
15 eqid +G=+G
16 1 2 15 mulgdir GGrpmnAXm+n·˙A=m·˙A+Gn·˙A
17 14 16 sylan2br GGrpmnAXm+n·˙A=m·˙A+Gn·˙A
18 17 anass1rs GGrpAXmnm+n·˙A=m·˙A+Gn·˙A
19 zaddcl mnm+n
20 19 adantl GGrpAXmnm+n
21 oveq1 x=m+nx·˙A=m+n·˙A
22 ovex m+n·˙AV
23 21 3 22 fvmpt m+nFm+n=m+n·˙A
24 20 23 syl GGrpAXmnFm+n=m+n·˙A
25 oveq1 x=mx·˙A=m·˙A
26 ovex m·˙AV
27 25 3 26 fvmpt mFm=m·˙A
28 27 ad2antrl GGrpAXmnFm=m·˙A
29 oveq1 x=nx·˙A=n·˙A
30 ovex n·˙AV
31 29 3 30 fvmpt nFn=n·˙A
32 31 ad2antll GGrpAXmnFn=n·˙A
33 28 32 oveq12d GGrpAXmnFm+GFn=m·˙A+Gn·˙A
34 18 24 33 3eqtr4d GGrpAXmnFm+n=Fm+GFn
35 fnfvelrn FFnm+nFm+nranF
36 9 19 35 syl2an GGrpAXmnFm+nranF
37 34 36 eqeltrrd GGrpAXmnFm+GFnranF
38 37 anassrs GGrpAXmnFm+GFnranF
39 38 ralrimiva GGrpAXmnFm+GFnranF
40 oveq2 v=FnFm+Gv=Fm+GFn
41 40 eleq1d v=FnFm+GvranFFm+GFnranF
42 41 ralrn FFnvranFFm+GvranFnFm+GFnranF
43 9 42 syl GGrpAXvranFFm+GvranFnFm+GFnranF
44 43 adantr GGrpAXmvranFFm+GvranFnFm+GFnranF
45 39 44 mpbird GGrpAXmvranFFm+GvranF
46 eqid invgG=invgG
47 1 2 46 mulgneg GGrpmAXm·˙A=invgGm·˙A
48 47 3expa GGrpmAXm·˙A=invgGm·˙A
49 48 an32s GGrpAXmm·˙A=invgGm·˙A
50 znegcl mm
51 50 adantl GGrpAXmm
52 oveq1 x=mx·˙A=m·˙A
53 ovex m·˙AV
54 52 3 53 fvmpt mFm=m·˙A
55 51 54 syl GGrpAXmFm=m·˙A
56 27 adantl GGrpAXmFm=m·˙A
57 56 fveq2d GGrpAXminvgGFm=invgGm·˙A
58 49 55 57 3eqtr4d GGrpAXmFm=invgGFm
59 fnfvelrn FFnmFmranF
60 9 50 59 syl2an GGrpAXmFmranF
61 58 60 eqeltrrd GGrpAXminvgGFmranF
62 45 61 jca GGrpAXmvranFFm+GvranFinvgGFmranF
63 62 ralrimiva GGrpAXmvranFFm+GvranFinvgGFmranF
64 oveq1 u=Fmu+Gv=Fm+Gv
65 64 eleq1d u=Fmu+GvranFFm+GvranF
66 65 ralbidv u=FmvranFu+GvranFvranFFm+GvranF
67 fveq2 u=FminvgGu=invgGFm
68 67 eleq1d u=FminvgGuranFinvgGFmranF
69 66 68 anbi12d u=FmvranFu+GvranFinvgGuranFvranFFm+GvranFinvgGFmranF
70 69 ralrn FFnuranFvranFu+GvranFinvgGuranFmvranFFm+GvranFinvgGFmranF
71 9 70 syl GGrpAXuranFvranFu+GvranFinvgGuranFmvranFFm+GvranFinvgGFmranF
72 63 71 mpbird GGrpAXuranFvranFu+GvranFinvgGuranF
73 1 15 46 issubg2 GGrpranFSubGrpGranFXranFuranFvranFu+GvranFinvgGuranF
74 73 adantr GGrpAXranFSubGrpGranFXranFuranFvranFu+GvranFinvgGuranF
75 8 13 72 74 mpbir3and GGrpAXranFSubGrpG
76 oveq1 x=1x·˙A=1·˙A
77 ovex 1·˙AV
78 76 3 77 fvmpt 1F1=1·˙A
79 10 78 ax-mp F1=1·˙A
80 1 2 mulg1 AX1·˙A=A
81 80 adantl GGrpAX1·˙A=A
82 79 81 eqtrid GGrpAXF1=A
83 82 12 eqeltrrd GGrpAXAranF
84 75 83 jca GGrpAXranFSubGrpGAranF