| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubg.x |
|
| 2 |
|
cycsubg.t |
|
| 3 |
|
cycsubg.f |
|
| 4 |
1 2
|
mulgcl |
|
| 5 |
4
|
3expa |
|
| 6 |
5
|
an32s |
|
| 7 |
6 3
|
fmptd |
|
| 8 |
7
|
frnd |
|
| 9 |
7
|
ffnd |
|
| 10 |
|
1z |
|
| 11 |
|
fnfvelrn |
|
| 12 |
9 10 11
|
sylancl |
|
| 13 |
12
|
ne0d |
|
| 14 |
|
df-3an |
|
| 15 |
|
eqid |
|
| 16 |
1 2 15
|
mulgdir |
|
| 17 |
14 16
|
sylan2br |
|
| 18 |
17
|
anass1rs |
|
| 19 |
|
zaddcl |
|
| 20 |
19
|
adantl |
|
| 21 |
|
oveq1 |
|
| 22 |
|
ovex |
|
| 23 |
21 3 22
|
fvmpt |
|
| 24 |
20 23
|
syl |
|
| 25 |
|
oveq1 |
|
| 26 |
|
ovex |
|
| 27 |
25 3 26
|
fvmpt |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
|
oveq1 |
|
| 30 |
|
ovex |
|
| 31 |
29 3 30
|
fvmpt |
|
| 32 |
31
|
ad2antll |
|
| 33 |
28 32
|
oveq12d |
|
| 34 |
18 24 33
|
3eqtr4d |
|
| 35 |
|
fnfvelrn |
|
| 36 |
9 19 35
|
syl2an |
|
| 37 |
34 36
|
eqeltrrd |
|
| 38 |
37
|
anassrs |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
41
|
ralrn |
|
| 43 |
9 42
|
syl |
|
| 44 |
43
|
adantr |
|
| 45 |
39 44
|
mpbird |
|
| 46 |
|
eqid |
|
| 47 |
1 2 46
|
mulgneg |
|
| 48 |
47
|
3expa |
|
| 49 |
48
|
an32s |
|
| 50 |
|
znegcl |
|
| 51 |
50
|
adantl |
|
| 52 |
|
oveq1 |
|
| 53 |
|
ovex |
|
| 54 |
52 3 53
|
fvmpt |
|
| 55 |
51 54
|
syl |
|
| 56 |
27
|
adantl |
|
| 57 |
56
|
fveq2d |
|
| 58 |
49 55 57
|
3eqtr4d |
|
| 59 |
|
fnfvelrn |
|
| 60 |
9 50 59
|
syl2an |
|
| 61 |
58 60
|
eqeltrrd |
|
| 62 |
45 61
|
jca |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
oveq1 |
|
| 65 |
64
|
eleq1d |
|
| 66 |
65
|
ralbidv |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
eleq1d |
|
| 69 |
66 68
|
anbi12d |
|
| 70 |
69
|
ralrn |
|
| 71 |
9 70
|
syl |
|
| 72 |
63 71
|
mpbird |
|
| 73 |
1 15 46
|
issubg2 |
|
| 74 |
73
|
adantr |
|
| 75 |
8 13 72 74
|
mpbir3and |
|
| 76 |
|
oveq1 |
|
| 77 |
|
ovex |
|
| 78 |
76 3 77
|
fvmpt |
|
| 79 |
10 78
|
ax-mp |
|
| 80 |
1 2
|
mulg1 |
|
| 81 |
80
|
adantl |
|
| 82 |
79 81
|
eqtrid |
|
| 83 |
82 12
|
eqeltrrd |
|
| 84 |
75 83
|
jca |
|