Metamath Proof Explorer


Theorem dalawlem6

Description: Lemma for dalaw . First piece of dalawlem8 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem6 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp21 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp22 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQA
10 5 2 4 hlatjcl KHLPAQAP˙QBaseK
11 6 8 9 10 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
12 simp32 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATA
13 5 4 atbase TATBaseK
14 12 13 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATBaseK
15 5 2 latjcl KLatP˙QBaseKTBaseKP˙Q˙TBaseK
16 7 11 14 15 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙TBaseK
17 simp31 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASA
18 5 4 atbase SASBaseK
19 17 18 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
20 5 3 latmcl KLatP˙Q˙TBaseKSBaseKP˙Q˙T˙SBaseK
21 7 16 19 20 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙SBaseK
22 simp23 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARA
23 5 2 4 hlatjcl KHLQARAQ˙RBaseK
24 6 9 22 23 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
25 simp33 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUA
26 5 4 atbase UAUBaseK
27 25 26 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUBaseK
28 5 3 latmcl KLatQ˙RBaseKUBaseKQ˙R˙UBaseK
29 7 24 27 28 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙UBaseK
30 5 2 4 hlatjcl KHLRAPAR˙PBaseK
31 6 22 8 30 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
32 5 2 4 hlatjcl KHLUASAU˙SBaseK
33 6 25 17 32 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
34 5 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
35 7 31 33 34 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
36 5 2 latjcl KLatQ˙R˙UBaseKR˙P˙U˙SBaseKQ˙R˙U˙R˙P˙U˙SBaseK
37 7 29 35 36 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙SBaseK
38 5 2 4 hlatjcl KHLTAUAT˙UBaseK
39 6 12 25 38 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
40 5 3 latmcl KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙UBaseK
41 7 24 39 40 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙UBaseK
42 5 2 latjcl KLatQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙T˙U˙R˙P˙U˙SBaseK
43 7 41 35 42 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙SBaseK
44 5 4 atbase PAPBaseK
45 8 44 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPBaseK
46 5 2 4 hlatjcl KHLPASAP˙SBaseK
47 6 8 17 46 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
48 5 2 4 hlatjcl KHLQATAQ˙TBaseK
49 6 9 12 48 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
50 5 3 latmcl KLatQ˙RBaseKQ˙TBaseKQ˙R˙Q˙TBaseK
51 7 24 49 50 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙Q˙TBaseK
52 5 3 latmcl KLatP˙SBaseKQ˙R˙Q˙TBaseKP˙S˙Q˙R˙Q˙TBaseK
53 7 47 51 52 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙R˙Q˙TBaseK
54 5 2 latjcl KLatPBaseKP˙S˙Q˙R˙Q˙TBaseKP˙P˙S˙Q˙R˙Q˙TBaseK
55 7 45 53 54 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S˙Q˙R˙Q˙TBaseK
56 5 4 atbase RARBaseK
57 22 56 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARBaseK
58 5 2 latjcl KLatRBaseKQ˙R˙UBaseKR˙Q˙R˙UBaseK
59 7 57 29 58 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R˙UBaseK
60 5 2 latjcl KLatPBaseKR˙Q˙R˙UBaseKP˙R˙Q˙R˙UBaseK
61 7 45 59 60 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙Q˙R˙UBaseK
62 5 1 2 3 latmlej22 KLatSBaseKP˙Q˙TBaseKPBaseKP˙Q˙T˙S˙P˙S
63 7 19 16 45 62 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙S
64 5 3 latmcl KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙SBaseK
65 7 49 47 64 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙SBaseK
66 5 2 latjcl KLatPBaseKQ˙T˙P˙SBaseKP˙Q˙T˙P˙SBaseK
67 7 45 65 66 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙SBaseK
68 5 2 latjcl KLatPBaseKQ˙R˙Q˙TBaseKP˙Q˙R˙Q˙TBaseK
69 7 45 51 68 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙R˙Q˙TBaseK
70 1 2 4 hlatlej2 KHLPASAS˙P˙S
71 6 8 17 70 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙S
72 5 2 latjcl KLatPBaseKQ˙TBaseKP˙Q˙TBaseK
73 7 45 49 72 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙TBaseK
74 5 1 3 latmlem2 KLatSBaseKP˙SBaseKP˙Q˙TBaseKS˙P˙SP˙Q˙T˙S˙P˙Q˙T˙P˙S
75 7 19 47 73 74 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙SP˙Q˙T˙S˙P˙Q˙T˙P˙S
76 71 75 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙T˙P˙S
77 2 4 hlatjass KHLPAQATAP˙Q˙T=P˙Q˙T
78 6 8 9 12 77 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T=P˙Q˙T
79 78 oveq1d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S=P˙Q˙T˙S
80 1 2 4 hlatlej1 KHLPASAP˙P˙S
81 6 8 17 80 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S
82 5 1 2 3 4 atmod1i1 KHLPAQ˙TBaseKP˙SBaseKP˙P˙SP˙Q˙T˙P˙S=P˙Q˙T˙P˙S
83 6 8 49 47 81 82 syl131anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S=P˙Q˙T˙P˙S
84 76 79 83 3brtr4d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙T˙P˙S
85 5 3 latmcom KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S=P˙S˙Q˙T
86 7 49 47 85 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S=P˙S˙Q˙T
87 simp12 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙R
88 86 87 eqbrtrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R
89 5 1 3 latmle1 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙Q˙T
90 7 49 47 89 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙T
91 5 1 3 latlem12 KLatQ˙T˙P˙SBaseKQ˙RBaseKQ˙TBaseKQ˙T˙P˙S˙Q˙RQ˙T˙P˙S˙Q˙TQ˙T˙P˙S˙Q˙R˙Q˙T
92 7 65 24 49 91 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙RQ˙T˙P˙S˙Q˙TQ˙T˙P˙S˙Q˙R˙Q˙T
93 88 90 92 mpbi2and KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙Q˙T
94 5 1 2 latjlej2 KLatQ˙T˙P˙SBaseKQ˙R˙Q˙TBaseKPBaseKQ˙T˙P˙S˙Q˙R˙Q˙TP˙Q˙T˙P˙S˙P˙Q˙R˙Q˙T
95 7 65 51 45 94 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙Q˙TP˙Q˙T˙P˙S˙P˙Q˙R˙Q˙T
96 93 95 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙P˙S˙P˙Q˙R˙Q˙T
97 5 1 7 21 67 69 84 96 lattrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙R˙Q˙T
98 5 1 3 latlem12 KLatP˙Q˙T˙SBaseKP˙SBaseKP˙Q˙R˙Q˙TBaseKP˙Q˙T˙S˙P˙SP˙Q˙T˙S˙P˙Q˙R˙Q˙TP˙Q˙T˙S˙P˙S˙P˙Q˙R˙Q˙T
99 7 21 47 69 98 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙SP˙Q˙T˙S˙P˙Q˙R˙Q˙TP˙Q˙T˙S˙P˙S˙P˙Q˙R˙Q˙T
100 63 97 99 mpbi2and KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙S˙P˙Q˙R˙Q˙T
101 5 1 2 3 4 atmod3i1 KHLPAP˙SBaseKQ˙R˙Q˙TBaseKP˙P˙SP˙P˙S˙Q˙R˙Q˙T=P˙S˙P˙Q˙R˙Q˙T
102 6 8 47 51 81 101 syl131anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S˙Q˙R˙Q˙T=P˙S˙P˙Q˙R˙Q˙T
103 100 102 breqtrrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙P˙S˙Q˙R˙Q˙T
104 simp13 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
105 5 3 latmcl KLatP˙SBaseKQ˙TBaseKP˙S˙Q˙TBaseK
106 7 47 49 105 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙TBaseK
107 5 2 4 hlatjcl KHLRAUAR˙UBaseK
108 6 22 25 107 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙UBaseK
109 5 1 3 latmlem2 KLatP˙S˙Q˙TBaseKR˙UBaseKQ˙RBaseKP˙S˙Q˙T˙R˙UQ˙R˙P˙S˙Q˙T˙Q˙R˙R˙U
110 7 106 108 24 109 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙UQ˙R˙P˙S˙Q˙T˙Q˙R˙R˙U
111 104 110 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙P˙S˙Q˙T˙Q˙R˙R˙U
112 hlol KHLKOL
113 6 112 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKOL
114 5 3 latm12 KOLP˙SBaseKQ˙RBaseKQ˙TBaseKP˙S˙Q˙R˙Q˙T=Q˙R˙P˙S˙Q˙T
115 113 47 24 49 114 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙R˙Q˙T=Q˙R˙P˙S˙Q˙T
116 1 2 4 hlatlej2 KHLQARAR˙Q˙R
117 6 9 22 116 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R
118 5 1 2 3 4 atmod3i1 KHLRAQ˙RBaseKUBaseKR˙Q˙RR˙Q˙R˙U=Q˙R˙R˙U
119 6 22 24 27 117 118 syl131anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R˙U=Q˙R˙R˙U
120 111 115 119 3brtr4d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙R˙Q˙T˙R˙Q˙R˙U
121 5 1 2 latjlej2 KLatP˙S˙Q˙R˙Q˙TBaseKR˙Q˙R˙UBaseKPBaseKP˙S˙Q˙R˙Q˙T˙R˙Q˙R˙UP˙P˙S˙Q˙R˙Q˙T˙P˙R˙Q˙R˙U
122 7 53 59 45 121 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙R˙Q˙T˙R˙Q˙R˙UP˙P˙S˙Q˙R˙Q˙T˙P˙R˙Q˙R˙U
123 120 122 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S˙Q˙R˙Q˙T˙P˙R˙Q˙R˙U
124 5 1 7 21 55 61 103 123 lattrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙R˙Q˙R˙U
125 5 2 latj13 KLatPBaseKRBaseKQ˙R˙UBaseKP˙R˙Q˙R˙U=Q˙R˙U˙R˙P
126 7 45 57 29 125 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙Q˙R˙U=Q˙R˙U˙R˙P
127 124 126 breqtrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙U˙R˙P
128 5 1 2 3 latmlej22 KLatSBaseKP˙Q˙TBaseKUBaseKP˙Q˙T˙S˙U˙S
129 7 19 16 27 128 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙U˙S
130 5 2 latjcl KLatQ˙R˙UBaseKR˙PBaseKQ˙R˙U˙R˙PBaseK
131 7 29 31 130 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙PBaseK
132 5 1 3 latlem12 KLatP˙Q˙T˙SBaseKQ˙R˙U˙R˙PBaseKU˙SBaseKP˙Q˙T˙S˙Q˙R˙U˙R˙PP˙Q˙T˙S˙U˙SP˙Q˙T˙S˙Q˙R˙U˙R˙P˙U˙S
133 7 21 131 33 132 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙U˙R˙PP˙Q˙T˙S˙U˙SP˙Q˙T˙S˙Q˙R˙U˙R˙P˙U˙S
134 127 129 133 mpbi2and KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙U˙R˙P˙U˙S
135 5 1 2 3 latmlej21 KLatUBaseKQ˙RBaseKSBaseKQ˙R˙U˙U˙S
136 7 27 24 19 135 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙U˙S
137 5 1 2 3 4 atmod1i1m KHLUAQ˙RBaseKR˙PBaseKU˙SBaseKQ˙R˙U˙U˙SQ˙R˙U˙R˙P˙U˙S=Q˙R˙U˙R˙P˙U˙S
138 6 25 24 31 33 136 137 syl231anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙S=Q˙R˙U˙R˙P˙U˙S
139 134 138 breqtrrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙U˙R˙P˙U˙S
140 1 2 4 hlatlej2 KHLTAUAU˙T˙U
141 6 12 25 140 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T˙U
142 5 1 3 latmlem2 KLatUBaseKT˙UBaseKQ˙RBaseKU˙T˙UQ˙R˙U˙Q˙R˙T˙U
143 7 27 39 24 142 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T˙UQ˙R˙U˙Q˙R˙T˙U
144 141 143 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙Q˙R˙T˙U
145 5 1 2 latjlej1 KLatQ˙R˙UBaseKQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙U˙Q˙R˙T˙UQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
146 7 29 41 35 145 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙Q˙R˙T˙UQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
147 144 146 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
148 5 1 7 21 37 43 139 147 lattrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙Q˙R˙T˙U˙R˙P˙U˙S