Metamath Proof Explorer


Theorem dfgrp3

Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions x and y of the equations ( a .+ x ) = b and ( x .+ a ) = b exist. Theorem 3.2 of Bruck p. 28. (Contributed by AV, 28-Aug-2021)

Ref Expression
Hypotheses dfgrp3.b B=BaseG
dfgrp3.p +˙=+G
Assertion dfgrp3 Could not format assertion : No typesetting found for |- ( G e. Grp <-> ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 dfgrp3.b B=BaseG
2 dfgrp3.p +˙=+G
3 grpsgrp Could not format ( G e. Grp -> G e. Smgrp ) : No typesetting found for |- ( G e. Grp -> G e. Smgrp ) with typecode |-
4 1 grpbn0 GGrpB
5 simpl GGrpxByBGGrp
6 simpr xByByB
7 6 adantl GGrpxByByB
8 simpl xByBxB
9 8 adantl GGrpxByBxB
10 eqid -G=-G
11 1 10 grpsubcl GGrpyBxBy-GxB
12 5 7 9 11 syl3anc GGrpxByBy-GxB
13 oveq1 l=y-Gxl+˙x=y-Gx+˙x
14 13 eqeq1d l=y-Gxl+˙x=yy-Gx+˙x=y
15 14 adantl GGrpxByBl=y-Gxl+˙x=yy-Gx+˙x=y
16 1 2 10 grpnpcan GGrpyBxBy-Gx+˙x=y
17 5 7 9 16 syl3anc GGrpxByBy-Gx+˙x=y
18 12 15 17 rspcedvd GGrpxByBlBl+˙x=y
19 eqid invgG=invgG
20 1 19 grpinvcl GGrpxBinvgGxB
21 20 adantrr GGrpxByBinvgGxB
22 1 2 5 21 7 grpcld GGrpxByBinvgGx+˙yB
23 oveq2 r=invgGx+˙yx+˙r=x+˙invgGx+˙y
24 23 eqeq1d r=invgGx+˙yx+˙r=yx+˙invgGx+˙y=y
25 24 adantl GGrpxByBr=invgGx+˙yx+˙r=yx+˙invgGx+˙y=y
26 eqid 0G=0G
27 1 2 26 19 grprinv GGrpxBx+˙invgGx=0G
28 27 adantrr GGrpxByBx+˙invgGx=0G
29 28 oveq1d GGrpxByBx+˙invgGx+˙y=0G+˙y
30 1 2 grpass GGrpxBinvgGxByBx+˙invgGx+˙y=x+˙invgGx+˙y
31 5 9 21 7 30 syl13anc GGrpxByBx+˙invgGx+˙y=x+˙invgGx+˙y
32 grpmnd GGrpGMnd
33 1 2 26 mndlid GMndyB0G+˙y=y
34 32 6 33 syl2an GGrpxByB0G+˙y=y
35 29 31 34 3eqtr3d GGrpxByBx+˙invgGx+˙y=y
36 22 25 35 rspcedvd GGrpxByBrBx+˙r=y
37 18 36 jca GGrpxByBlBl+˙x=yrBx+˙r=y
38 37 ralrimivva GGrpxByBlBl+˙x=yrBx+˙r=y
39 3 4 38 3jca Could not format ( G e. Grp -> ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) ) : No typesetting found for |- ( G e. Grp -> ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) ) with typecode |-
40 simp1 Could not format ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> G e. Smgrp ) : No typesetting found for |- ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> G e. Smgrp ) with typecode |-
41 1 2 dfgrp3lem Could not format ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> E. u e. B A. a e. B ( ( u .+ a ) = a /\ E. i e. B ( i .+ a ) = u ) ) : No typesetting found for |- ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> E. u e. B A. a e. B ( ( u .+ a ) = a /\ E. i e. B ( i .+ a ) = u ) ) with typecode |-
42 1 2 dfgrp2 Could not format ( G e. Grp <-> ( G e. Smgrp /\ E. u e. B A. a e. B ( ( u .+ a ) = a /\ E. i e. B ( i .+ a ) = u ) ) ) : No typesetting found for |- ( G e. Grp <-> ( G e. Smgrp /\ E. u e. B A. a e. B ( ( u .+ a ) = a /\ E. i e. B ( i .+ a ) = u ) ) ) with typecode |-
43 40 41 42 sylanbrc Could not format ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> G e. Grp ) : No typesetting found for |- ( ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) -> G e. Grp ) with typecode |-
44 39 43 impbii Could not format ( G e. Grp <-> ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) ) : No typesetting found for |- ( G e. Grp <-> ( G e. Smgrp /\ B =/= (/) /\ A. x e. B A. y e. B ( E. l e. B ( l .+ x ) = y /\ E. r e. B ( x .+ r ) = y ) ) ) with typecode |-