Metamath Proof Explorer


Theorem dfon2lem5

Description: Lemma for dfon2 . Two sets satisfying the new definition also satisfy trichotomy with respect to e. . (Contributed by Scott Fenton, 25-Feb-2011)

Ref Expression
Hypotheses dfon2lem5.1 A V
dfon2lem5.2 B V
Assertion dfon2lem5 x x A Tr x x A y y B Tr y y B A B A = B B A

Proof

Step Hyp Ref Expression
1 dfon2lem5.1 A V
2 dfon2lem5.2 B V
3 1 2 dfon2lem4 x x A Tr x x A y y B Tr y y B A B B A
4 dfpss2 A B A B ¬ A = B
5 dfpss2 B A B A ¬ B = A
6 eqcom B = A A = B
7 6 notbii ¬ B = A ¬ A = B
8 7 anbi2i B A ¬ B = A B A ¬ A = B
9 5 8 bitri B A B A ¬ A = B
10 4 9 orbi12i A B B A A B ¬ A = B B A ¬ A = B
11 andir A B B A ¬ A = B A B ¬ A = B B A ¬ A = B
12 10 11 bitr4i A B B A A B B A ¬ A = B
13 orcom A B B A B A A B
14 dfon2lem3 B V y y B Tr y y B Tr B z B ¬ z z
15 2 14 ax-mp y y B Tr y y B Tr B z B ¬ z z
16 15 simpld y y B Tr y y B Tr B
17 psseq1 x = B x A B A
18 treq x = B Tr x Tr B
19 17 18 anbi12d x = B x A Tr x B A Tr B
20 eleq1 x = B x A B A
21 19 20 imbi12d x = B x A Tr x x A B A Tr B B A
22 2 21 spcv x x A Tr x x A B A Tr B B A
23 22 expcomd x x A Tr x x A Tr B B A B A
24 23 imp x x A Tr x x A Tr B B A B A
25 16 24 sylan2 x x A Tr x x A y y B Tr y y B B A B A
26 dfon2lem3 A V x x A Tr x x A Tr A z A ¬ z z
27 1 26 ax-mp x x A Tr x x A Tr A z A ¬ z z
28 27 simpld x x A Tr x x A Tr A
29 psseq1 y = A y B A B
30 treq y = A Tr y Tr A
31 29 30 anbi12d y = A y B Tr y A B Tr A
32 eleq1 y = A y B A B
33 31 32 imbi12d y = A y B Tr y y B A B Tr A A B
34 1 33 spcv y y B Tr y y B A B Tr A A B
35 34 expcomd y y B Tr y y B Tr A A B A B
36 28 35 mpan9 x x A Tr x x A y y B Tr y y B A B A B
37 25 36 orim12d x x A Tr x x A y y B Tr y y B B A A B B A A B
38 13 37 syl5bi x x A Tr x x A y y B Tr y y B A B B A B A A B
39 12 38 syl5bir x x A Tr x x A y y B Tr y y B A B B A ¬ A = B B A A B
40 3 39 mpand x x A Tr x x A y y B Tr y y B ¬ A = B B A A B
41 3orrot A B A = B B A A = B B A A B
42 3orass A = B B A A B A = B B A A B
43 df-or A = B B A A B ¬ A = B B A A B
44 42 43 bitri A = B B A A B ¬ A = B B A A B
45 41 44 bitri A B A = B B A ¬ A = B B A A B
46 40 45 sylibr x x A Tr x x A y y B Tr y y B A B A = B B A