Metamath Proof Explorer


Theorem dfrtrcl3

Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 . (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion dfrtrcl3 t*=rVn0rrn

Proof

Step Hyp Ref Expression
1 df-rtrcl t*=rVz|Idomrranrzrzzzz
2 relexp0g rVrr0=Idomrranr
3 nn0ex 0V
4 0nn0 00
5 oveq1 a=tarn=trn
6 5 iuneq2d a=tn0arn=n0trn
7 oveq2 n=ktrn=trk
8 7 cbviunv n0trn=k0trk
9 6 8 eqtrdi a=tn0arn=k0trk
10 9 cbvmptv aVn0arn=tVk0trk
11 10 ov2ssiunov2 rV0V00rr0aVn0arnr
12 3 4 11 mp3an23 rVrr0aVn0arnr
13 2 12 eqsstrrd rVIdomrranraVn0arnr
14 relexp1g rVrr1=r
15 1nn0 10
16 10 ov2ssiunov2 rV0V10rr1aVn0arnr
17 3 15 16 mp3an23 rVrr1aVn0arnr
18 14 17 eqsstrrd rVraVn0arnr
19 nn0uz 0=0
20 10 iunrelexpuztr rV0=000aVn0arnraVn0arnraVn0arnr
21 19 4 20 mp3an23 rVaVn0arnraVn0arnraVn0arnr
22 fvex aVn0arnrV
23 sseq2 z=aVn0arnrIdomrranrzIdomrranraVn0arnr
24 sseq2 z=aVn0arnrrzraVn0arnr
25 id z=aVn0arnrz=aVn0arnr
26 25 25 coeq12d z=aVn0arnrzz=aVn0arnraVn0arnr
27 26 25 sseq12d z=aVn0arnrzzzaVn0arnraVn0arnraVn0arnr
28 23 24 27 3anbi123d z=aVn0arnrIdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnr
29 28 a1i rVz=aVn0arnrIdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnr
30 29 alrimiv rVzz=aVn0arnrIdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnr
31 elabgt aVn0arnrVzz=aVn0arnrIdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnraVn0arnrz|IdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnr
32 22 30 31 sylancr rVaVn0arnrz|IdomrranrzrzzzzIdomrranraVn0arnrraVn0arnraVn0arnraVn0arnraVn0arnr
33 13 18 21 32 mpbir3and rVaVn0arnrz|Idomrranrzrzzzz
34 intss1 aVn0arnrz|Idomrranrzrzzzzz|IdomrranrzrzzzzaVn0arnr
35 33 34 syl rVz|IdomrranrzrzzzzaVn0arnr
36 vex sV
37 sseq2 z=sIdomrranrzIdomrranrs
38 sseq2 z=srzrs
39 id z=sz=s
40 39 39 coeq12d z=szz=ss
41 40 39 sseq12d z=szzzsss
42 37 38 41 3anbi123d z=sIdomrranrzrzzzzIdomrranrsrssss
43 36 42 elab sz|IdomrranrzrzzzzIdomrranrsrssss
44 eqid 0=0
45 10 iunrelexpmin2 rV0=0sIdomrranrsrssssaVn0arnrs
46 44 45 mpan2 rVsIdomrranrsrssssaVn0arnrs
47 46 19.21bi rVIdomrranrsrssssaVn0arnrs
48 43 47 biimtrid rVsz|IdomrranrzrzzzzaVn0arnrs
49 48 ralrimiv rVsz|IdomrranrzrzzzzaVn0arnrs
50 ssint aVn0arnrz|Idomrranrzrzzzzsz|IdomrranrzrzzzzaVn0arnrs
51 49 50 sylibr rVaVn0arnrz|Idomrranrzrzzzz
52 35 51 eqssd rVz|Idomrranrzrzzzz=aVn0arnr
53 oveq1 a=rarn=rrn
54 53 iuneq2d a=rn0arn=n0rrn
55 eqid aVn0arn=aVn0arn
56 ovex rrnV
57 3 56 iunex n0rrnV
58 54 55 57 fvmpt rVaVn0arnr=n0rrn
59 52 58 eqtrd rVz|Idomrranrzrzzzz=n0rrn
60 59 mpteq2ia rVz|Idomrranrzrzzzz=rVn0rrn
61 1 60 eqtri t*=rVn0rrn