Metamath Proof Explorer


Theorem dihjatc1

Description: Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change .\/ order of ( X ./\ Y ) .\/ Q here and down? (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses dihjatc1.b B=BaseK
dihjatc1.l ˙=K
dihjatc1.h H=LHypK
dihjatc1.j ˙=joinK
dihjatc1.m ˙=meetK
dihjatc1.a A=AtomsK
dihjatc1.u U=DVecHKW
dihjatc1.s ˙=LSSumU
dihjatc1.i I=DIsoHKW
Assertion dihjatc1 KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WIX˙Y˙Q=IQ˙IX˙Y

Proof

Step Hyp Ref Expression
1 dihjatc1.b B=BaseK
2 dihjatc1.l ˙=K
3 dihjatc1.h H=LHypK
4 dihjatc1.j ˙=joinK
5 dihjatc1.m ˙=meetK
6 dihjatc1.a A=AtomsK
7 dihjatc1.u U=DVecHKW
8 dihjatc1.s ˙=LSSumU
9 dihjatc1.i I=DIsoHKW
10 simp11 KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WKHLWH
11 simp11l KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WKHL
12 11 hllatd KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WKLat
13 simp12 KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WXB
14 simp13 KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WYB
15 1 5 latmcl KLatXBYBX˙YB
16 12 13 14 15 syl3anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙YB
17 simp2l KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQA
18 1 6 atbase QAQB
19 17 18 syl KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQB
20 1 4 latjcl KLatX˙YBQBX˙Y˙QB
21 12 16 19 20 syl3anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙QB
22 simp2 KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQA¬Q˙W
23 simp3l KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQ˙X
24 1 2 3 4 5 6 dihmeetlem6 KHLWHXBYBQA¬Q˙WQ˙X¬X˙Y˙Q˙W
25 10 13 14 22 23 24 syl32anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙W¬X˙Y˙Q˙W
26 1 2 4 5 6 dihmeetlem5 KHLXBYBQAQ˙XX˙Y˙Q=X˙Y˙Q
27 11 13 14 17 23 26 syl32anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙Q=X˙Y˙Q
28 27 breq1d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙Q˙WX˙Y˙Q˙W
29 25 28 mtbid KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙W¬X˙Y˙Q˙W
30 1 2 4 latlej2 KLatX˙YBQBQ˙X˙Y˙Q
31 12 16 19 30 syl3anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQ˙X˙Y˙Q
32 1 2 4 5 6 3 9 7 8 dihvalcq2 KHLWHX˙Y˙QB¬X˙Y˙Q˙WQA¬Q˙WQ˙X˙Y˙QIX˙Y˙Q=IQ˙IX˙Y˙Q˙W
33 10 21 29 22 31 32 syl122anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WIX˙Y˙Q=IQ˙IX˙Y˙Q˙W
34 eqid 0.K=0.K
35 2 5 34 6 3 lhpmat KHLWHQA¬Q˙WQ˙W=0.K
36 10 22 35 syl2anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WQ˙W=0.K
37 36 oveq2d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙Q˙W=X˙Y˙0.K
38 simp11r KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WWH
39 1 3 lhpbase WHWB
40 38 39 syl KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WWB
41 simp3r KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙W
42 1 2 4 5 6 atmod1i2 KHLQAX˙YBWBX˙Y˙WX˙Y˙Q˙W=X˙Y˙Q˙W
43 11 17 16 40 41 42 syl131anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙Q˙W=X˙Y˙Q˙W
44 hlol KHLKOL
45 11 44 syl KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WKOL
46 1 4 34 olj01 KOLX˙YBX˙Y˙0.K=X˙Y
47 45 16 46 syl2anc KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙0.K=X˙Y
48 37 43 47 3eqtr3d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WX˙Y˙Q˙W=X˙Y
49 48 fveq2d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WIX˙Y˙Q˙W=IX˙Y
50 49 oveq2d KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WIQ˙IX˙Y˙Q˙W=IQ˙IX˙Y
51 33 50 eqtrd KHLWHXBYBQA¬Q˙WQ˙XX˙Y˙WIX˙Y˙Q=IQ˙IX˙Y