Description: Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change .\/ order of ( X ./\ Y ) .\/ Q here and down? (Contributed by NM, 6-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihjatc1.b | |
|
dihjatc1.l | |
||
dihjatc1.h | |
||
dihjatc1.j | |
||
dihjatc1.m | |
||
dihjatc1.a | |
||
dihjatc1.u | |
||
dihjatc1.s | |
||
dihjatc1.i | |
||
Assertion | dihjatc1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatc1.b | |
|
2 | dihjatc1.l | |
|
3 | dihjatc1.h | |
|
4 | dihjatc1.j | |
|
5 | dihjatc1.m | |
|
6 | dihjatc1.a | |
|
7 | dihjatc1.u | |
|
8 | dihjatc1.s | |
|
9 | dihjatc1.i | |
|
10 | simp11 | |
|
11 | simp11l | |
|
12 | 11 | hllatd | |
13 | simp12 | |
|
14 | simp13 | |
|
15 | 1 5 | latmcl | |
16 | 12 13 14 15 | syl3anc | |
17 | simp2l | |
|
18 | 1 6 | atbase | |
19 | 17 18 | syl | |
20 | 1 4 | latjcl | |
21 | 12 16 19 20 | syl3anc | |
22 | simp2 | |
|
23 | simp3l | |
|
24 | 1 2 3 4 5 6 | dihmeetlem6 | |
25 | 10 13 14 22 23 24 | syl32anc | |
26 | 1 2 4 5 6 | dihmeetlem5 | |
27 | 11 13 14 17 23 26 | syl32anc | |
28 | 27 | breq1d | |
29 | 25 28 | mtbid | |
30 | 1 2 4 | latlej2 | |
31 | 12 16 19 30 | syl3anc | |
32 | 1 2 4 5 6 3 9 7 8 | dihvalcq2 | |
33 | 10 21 29 22 31 32 | syl122anc | |
34 | eqid | |
|
35 | 2 5 34 6 3 | lhpmat | |
36 | 10 22 35 | syl2anc | |
37 | 36 | oveq2d | |
38 | simp11r | |
|
39 | 1 3 | lhpbase | |
40 | 38 39 | syl | |
41 | simp3r | |
|
42 | 1 2 4 5 6 | atmod1i2 | |
43 | 11 17 16 40 41 42 | syl131anc | |
44 | hlol | |
|
45 | 11 44 | syl | |
46 | 1 4 34 | olj01 | |
47 | 45 16 46 | syl2anc | |
48 | 37 43 47 | 3eqtr3d | |
49 | 48 | fveq2d | |
50 | 49 | oveq2d | |
51 | 33 50 | eqtrd | |