Metamath Proof Explorer


Theorem dihwN

Description: Value of isomorphism H at the fiducial hyperplane W . (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihw.b B=BaseK
dihw.h H=LHypK
dihw.t T=LTrnKW
dihw.o 0˙=fTIB
dihw.i I=DIsoHKW
dihw.k φKHLWH
Assertion dihwN φIW=T×0˙

Proof

Step Hyp Ref Expression
1 dihw.b B=BaseK
2 dihw.h H=LHypK
3 dihw.t T=LTrnKW
4 dihw.o 0˙=fTIB
5 dihw.i I=DIsoHKW
6 dihw.k φKHLWH
7 6 simprd φWH
8 1 2 lhpbase WHWB
9 7 8 syl φWB
10 6 simpld φKHL
11 10 hllatd φKLat
12 eqid K=K
13 1 12 latref KLatWBWKW
14 11 9 13 syl2anc φWKW
15 9 14 jca φWBWKW
16 eqid DIsoBKW=DIsoBKW
17 1 12 2 5 16 dihvalb KHLWHWBWKWIW=DIsoBKWW
18 6 15 17 syl2anc φIW=DIsoBKWW
19 eqid DIsoAKW=DIsoAKW
20 1 12 2 3 4 19 16 dibval2 KHLWHWBWKWDIsoBKWW=DIsoAKWW×0˙
21 6 15 20 syl2anc φDIsoBKWW=DIsoAKWW×0˙
22 eqid trLKW=trLKW
23 1 12 2 3 22 19 diaval KHLWHWBWKWDIsoAKWW=gT|trLKWgKW
24 6 15 23 syl2anc φDIsoAKWW=gT|trLKWgKW
25 12 2 3 22 trlle KHLWHgTtrLKWgKW
26 6 25 sylan φgTtrLKWgKW
27 26 ralrimiva φgTtrLKWgKW
28 rabid2 T=gT|trLKWgKWgTtrLKWgKW
29 27 28 sylibr φT=gT|trLKWgKW
30 24 29 eqtr4d φDIsoAKWW=T
31 30 xpeq1d φDIsoAKWW×0˙=T×0˙
32 18 21 31 3eqtrd φIW=T×0˙