Metamath Proof Explorer


Theorem disjxpin

Description: Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018)

Ref Expression
Hypotheses disjxpin.1 x=1stpC=E
disjxpin.2 y=2ndpD=F
disjxpin.3 φDisjxAC
disjxpin.4 φDisjyBD
Assertion disjxpin φDisjpA×BEF

Proof

Step Hyp Ref Expression
1 disjxpin.1 x=1stpC=E
2 disjxpin.2 y=2ndpD=F
3 disjxpin.3 φDisjxAC
4 disjxpin.4 φDisjyBD
5 xp1st qA×B1stqA
6 5 ad2antrl φqA×BrA×B1stqA
7 xp1st rA×B1strA
8 7 ad2antll φqA×BrA×B1strA
9 simpl φqA×BrA×Bφ
10 disjors DisjxACaAcAa=ca/xCc/xC=
11 3 10 sylib φaAcAa=ca/xCc/xC=
12 eqeq1 a=1stqa=c1stq=c
13 csbeq1 a=1stqa/xC=1stq/xC
14 13 ineq1d a=1stqa/xCc/xC=1stq/xCc/xC
15 14 eqeq1d a=1stqa/xCc/xC=1stq/xCc/xC=
16 12 15 orbi12d a=1stqa=ca/xCc/xC=1stq=c1stq/xCc/xC=
17 eqeq2 c=1str1stq=c1stq=1str
18 csbeq1 c=1strc/xC=1str/xC
19 18 ineq2d c=1str1stq/xCc/xC=1stq/xC1str/xC
20 19 eqeq1d c=1str1stq/xCc/xC=1stq/xC1str/xC=
21 17 20 orbi12d c=1str1stq=c1stq/xCc/xC=1stq=1str1stq/xC1str/xC=
22 16 21 rspc2v 1stqA1strAaAcAa=ca/xCc/xC=1stq=1str1stq/xC1str/xC=
23 11 22 syl5 1stqA1strAφ1stq=1str1stq/xC1str/xC=
24 23 imp 1stqA1strAφ1stq=1str1stq/xC1str/xC=
25 6 8 9 24 syl21anc φqA×BrA×B1stq=1str1stq/xC1str/xC=
26 xp2nd qA×B2ndqB
27 26 ad2antrl φqA×BrA×B2ndqB
28 xp2nd rA×B2ndrB
29 28 ad2antll φqA×BrA×B2ndrB
30 disjors DisjyBDbBdBb=db/yDd/yD=
31 4 30 sylib φbBdBb=db/yDd/yD=
32 eqeq1 b=2ndqb=d2ndq=d
33 csbeq1 b=2ndqb/yD=2ndq/yD
34 33 ineq1d b=2ndqb/yDd/yD=2ndq/yDd/yD
35 34 eqeq1d b=2ndqb/yDd/yD=2ndq/yDd/yD=
36 32 35 orbi12d b=2ndqb=db/yDd/yD=2ndq=d2ndq/yDd/yD=
37 eqeq2 d=2ndr2ndq=d2ndq=2ndr
38 csbeq1 d=2ndrd/yD=2ndr/yD
39 38 ineq2d d=2ndr2ndq/yDd/yD=2ndq/yD2ndr/yD
40 39 eqeq1d d=2ndr2ndq/yDd/yD=2ndq/yD2ndr/yD=
41 37 40 orbi12d d=2ndr2ndq=d2ndq/yDd/yD=2ndq=2ndr2ndq/yD2ndr/yD=
42 36 41 rspc2v 2ndqB2ndrBbBdBb=db/yDd/yD=2ndq=2ndr2ndq/yD2ndr/yD=
43 31 42 syl5 2ndqB2ndrBφ2ndq=2ndr2ndq/yD2ndr/yD=
44 43 imp 2ndqB2ndrBφ2ndq=2ndr2ndq/yD2ndr/yD=
45 27 29 9 44 syl21anc φqA×BrA×B2ndq=2ndr2ndq/yD2ndr/yD=
46 25 45 jca φqA×BrA×B1stq=1str1stq/xC1str/xC=2ndq=2ndr2ndq/yD2ndr/yD=
47 anddi 1stq=1str1stq/xC1str/xC=2ndq=2ndr2ndq/yD2ndr/yD=1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=
48 46 47 sylib φqA×BrA×B1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=
49 orass 1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=
50 48 49 sylib φqA×BrA×B1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=
51 xpopth qA×BrA×B1stq=1str2ndq=2ndrq=r
52 51 adantl φqA×BrA×B1stq=1str2ndq=2ndrq=r
53 52 biimpd φqA×BrA×B1stq=1str2ndq=2ndrq=r
54 inss2 q/pEr/pEq/pFr/pFq/pFr/pF
55 csbin q/pEF=q/pEq/pF
56 csbin r/pEF=r/pEr/pF
57 55 56 ineq12i q/pEFr/pEF=q/pEq/pFr/pEr/pF
58 in4 q/pEq/pFr/pEr/pF=q/pEr/pEq/pFr/pF
59 57 58 eqtri q/pEFr/pEF=q/pEr/pEq/pFr/pF
60 vex qV
61 csbnestgw qVq/p2ndp/yD=q/p2ndp/yD
62 60 61 ax-mp q/p2ndp/yD=q/p2ndp/yD
63 fvex 2ndpV
64 63 2 csbie 2ndp/yD=F
65 64 csbeq2i q/p2ndp/yD=q/pF
66 csbfv q/p2ndp=2ndq
67 csbeq1 q/p2ndp=2ndqq/p2ndp/yD=2ndq/yD
68 66 67 ax-mp q/p2ndp/yD=2ndq/yD
69 62 65 68 3eqtr3ri 2ndq/yD=q/pF
70 vex rV
71 csbnestgw rVr/p2ndp/yD=r/p2ndp/yD
72 70 71 ax-mp r/p2ndp/yD=r/p2ndp/yD
73 64 csbeq2i r/p2ndp/yD=r/pF
74 csbfv r/p2ndp=2ndr
75 csbeq1 r/p2ndp=2ndrr/p2ndp/yD=2ndr/yD
76 74 75 ax-mp r/p2ndp/yD=2ndr/yD
77 72 73 76 3eqtr3ri 2ndr/yD=r/pF
78 69 77 ineq12i 2ndq/yD2ndr/yD=q/pFr/pF
79 54 59 78 3sstr4i q/pEFr/pEF2ndq/yD2ndr/yD
80 sseq0 q/pEFr/pEF2ndq/yD2ndr/yD2ndq/yD2ndr/yD=q/pEFr/pEF=
81 79 80 mpan 2ndq/yD2ndr/yD=q/pEFr/pEF=
82 81 a1i φqA×BrA×B2ndq/yD2ndr/yD=q/pEFr/pEF=
83 82 adantld φqA×BrA×B1stq=1str2ndq/yD2ndr/yD=q/pEFr/pEF=
84 inss1 q/pEr/pEq/pFr/pFq/pEr/pE
85 csbnestgw qVq/p1stp/xC=q/p1stp/xC
86 60 85 ax-mp q/p1stp/xC=q/p1stp/xC
87 fvex 1stpV
88 87 1 csbie 1stp/xC=E
89 88 csbeq2i q/p1stp/xC=q/pE
90 csbfv q/p1stp=1stq
91 csbeq1 q/p1stp=1stqq/p1stp/xC=1stq/xC
92 90 91 ax-mp q/p1stp/xC=1stq/xC
93 86 89 92 3eqtr3ri 1stq/xC=q/pE
94 csbnestgw rVr/p1stp/xC=r/p1stp/xC
95 70 94 ax-mp r/p1stp/xC=r/p1stp/xC
96 88 csbeq2i r/p1stp/xC=r/pE
97 csbfv r/p1stp=1str
98 csbeq1 r/p1stp=1strr/p1stp/xC=1str/xC
99 97 98 ax-mp r/p1stp/xC=1str/xC
100 95 96 99 3eqtr3ri 1str/xC=r/pE
101 93 100 ineq12i 1stq/xC1str/xC=q/pEr/pE
102 84 59 101 3sstr4i q/pEFr/pEF1stq/xC1str/xC
103 sseq0 q/pEFr/pEF1stq/xC1str/xC1stq/xC1str/xC=q/pEFr/pEF=
104 102 103 mpan 1stq/xC1str/xC=q/pEFr/pEF=
105 104 a1i φqA×BrA×B1stq/xC1str/xC=q/pEFr/pEF=
106 105 adantrd φqA×BrA×B1stq/xC1str/xC=2ndq=2ndrq/pEFr/pEF=
107 82 adantld φqA×BrA×B1stq/xC1str/xC=2ndq/yD2ndr/yD=q/pEFr/pEF=
108 106 107 jaod φqA×BrA×B1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=q/pEFr/pEF=
109 83 108 jaod φqA×BrA×B1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=q/pEFr/pEF=
110 53 109 orim12d φqA×BrA×B1stq=1str2ndq=2ndr1stq=1str2ndq/yD2ndr/yD=1stq/xC1str/xC=2ndq=2ndr1stq/xC1str/xC=2ndq/yD2ndr/yD=q=rq/pEFr/pEF=
111 50 110 mpd φqA×BrA×Bq=rq/pEFr/pEF=
112 111 ralrimivva φqA×BrA×Bq=rq/pEFr/pEF=
113 disjors DisjpA×BEFqA×BrA×Bq=rq/pEFr/pEF=
114 112 113 sylibr φDisjpA×BEF