Metamath Proof Explorer


Theorem dispcmp

Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion dispcmp X V 𝒫 X Paracomp

Proof

Step Hyp Ref Expression
1 distop X V 𝒫 X Top
2 simpr x X u = x u = x
3 snelpwi x X x 𝒫 X
4 3 adantr x X u = x x 𝒫 X
5 2 4 eqeltrd x X u = x u 𝒫 X
6 5 rexlimiva x X u = x u 𝒫 X
7 6 abssi u | x X u = x 𝒫 X
8 simpl u = v x = z u = v
9 simpr u = v x = z x = z
10 9 sneqd u = v x = z x = z
11 8 10 eqeq12d u = v x = z u = x v = z
12 11 cbvrexdva u = v x X u = x z X v = z
13 12 cbvabv u | x X u = x = v | z X v = z
14 13 dissnlocfin X V u | x X u = x LocFin 𝒫 X
15 elpwg u | x X u = x LocFin 𝒫 X u | x X u = x 𝒫 𝒫 X u | x X u = x 𝒫 X
16 14 15 syl X V u | x X u = x 𝒫 𝒫 X u | x X u = x 𝒫 X
17 7 16 mpbiri X V u | x X u = x 𝒫 𝒫 X
18 17 ad2antrr X V y 𝒫 𝒫 X X = y u | x X u = x 𝒫 𝒫 X
19 14 ad2antrr X V y 𝒫 𝒫 X X = y u | x X u = x LocFin 𝒫 X
20 18 19 elind X V y 𝒫 𝒫 X X = y u | x X u = x 𝒫 𝒫 X LocFin 𝒫 X
21 simpll X V y 𝒫 𝒫 X X = y X V
22 simpr X V y 𝒫 𝒫 X X = y X = y
23 22 eqcomd X V y 𝒫 𝒫 X X = y y = X
24 13 dissnref X V y = X u | x X u = x Ref y
25 21 23 24 syl2anc X V y 𝒫 𝒫 X X = y u | x X u = x Ref y
26 breq1 z = u | x X u = x z Ref y u | x X u = x Ref y
27 26 rspcev u | x X u = x 𝒫 𝒫 X LocFin 𝒫 X u | x X u = x Ref y z 𝒫 𝒫 X LocFin 𝒫 X z Ref y
28 20 25 27 syl2anc X V y 𝒫 𝒫 X X = y z 𝒫 𝒫 X LocFin 𝒫 X z Ref y
29 28 ex X V y 𝒫 𝒫 X X = y z 𝒫 𝒫 X LocFin 𝒫 X z Ref y
30 29 ralrimiva X V y 𝒫 𝒫 X X = y z 𝒫 𝒫 X LocFin 𝒫 X z Ref y
31 unipw 𝒫 X = X
32 31 eqcomi X = 𝒫 X
33 32 iscref 𝒫 X CovHasRef LocFin 𝒫 X 𝒫 X Top y 𝒫 𝒫 X X = y z 𝒫 𝒫 X LocFin 𝒫 X z Ref y
34 1 30 33 sylanbrc X V 𝒫 X CovHasRef LocFin 𝒫 X
35 ispcmp 𝒫 X Paracomp 𝒫 X CovHasRef LocFin 𝒫 X
36 34 35 sylibr X V 𝒫 X Paracomp