Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
|
2 |
|
simpr |
|
3 |
|
snelpwi |
|
4 |
3
|
adantr |
|
5 |
2 4
|
eqeltrd |
|
6 |
5
|
rexlimiva |
|
7 |
6
|
abssi |
|
8 |
|
simpl |
|
9 |
|
simpr |
|
10 |
9
|
sneqd |
|
11 |
8 10
|
eqeq12d |
|
12 |
11
|
cbvrexdva |
|
13 |
12
|
cbvabv |
|
14 |
13
|
dissnlocfin |
|
15 |
|
elpwg |
|
16 |
14 15
|
syl |
|
17 |
7 16
|
mpbiri |
|
18 |
17
|
ad2antrr |
|
19 |
14
|
ad2antrr |
|
20 |
18 19
|
elind |
|
21 |
|
simpll |
|
22 |
|
simpr |
|
23 |
22
|
eqcomd |
|
24 |
13
|
dissnref |
|
25 |
21 23 24
|
syl2anc |
|
26 |
|
breq1 |
|
27 |
26
|
rspcev |
|
28 |
20 25 27
|
syl2anc |
|
29 |
28
|
ex |
|
30 |
29
|
ralrimiva |
|
31 |
|
unipw |
|
32 |
31
|
eqcomi |
|
33 |
32
|
iscref |
|
34 |
1 30 33
|
sylanbrc |
|
35 |
|
ispcmp |
|
36 |
34 35
|
sylibr |
|