Metamath Proof Explorer


Theorem dissneqlem

Description: This is the core of the proof of dissneq , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypothesis dissneq.c C=u|xAu=x
Assertion dissneqlem CBBTopOnAB=𝒫A

Proof

Step Hyp Ref Expression
1 dissneq.c C=u|xAu=x
2 topgele BTopOnAABB𝒫A
3 2 adantl CBBTopOnAABB𝒫A
4 3 simprd CBBTopOnAB𝒫A
5 velpw x𝒫AxA
6 simp3 CBxABTopOnABTopOnA
7 df-ima zAzx=ranzAzx
8 resmpt xAzAzx=zxz
9 8 rneqd xAranzAzx=ranzxz
10 7 9 eqtrid xAzAzx=ranzxz
11 rnmptsn ranzxz=u|zxu=z
12 10 11 eqtrdi xAzAzx=u|zxu=z
13 imassrn zAzxranzAz
14 12 13 eqsstrrdi xAu|zxu=zranzAz
15 rnmptsn ranzAz=u|zAu=z
16 14 15 sseqtrdi xAu|zxu=zu|zAu=z
17 sneq x=zx=z
18 17 eqeq2d x=zu=xu=z
19 18 cbvrexvw xAu=xzAu=z
20 19 abbii u|xAu=x=u|zAu=z
21 1 20 eqtri C=u|zAu=z
22 16 21 sseqtrrdi xAu|zxu=zC
23 22 adantl CBxAu|zxu=zC
24 sstr u|zxu=zCCBu|zxu=zB
25 24 expcom CBu|zxu=zCu|zxu=zB
26 25 adantr CBxAu|zxu=zCu|zxu=zB
27 23 26 mpd CBxAu|zxu=zB
28 27 3adant3 CBxABTopOnAu|zxu=zB
29 6 28 ssexd CBxABTopOnAu|zxu=zV
30 isset u|zxu=zVyy=u|zxu=z
31 29 30 sylib CBxABTopOnAyy=u|zxu=z
32 eqid zAz=zAz
33 eqid u|zAu=z=u|zAu=z
34 32 33 mptsnun xAx=zAzx
35 12 unieqd xAzAzx=u|zxu=z
36 34 35 eqtrd xAx=u|zxu=z
37 36 adantl CBxAx=u|zxu=z
38 27 37 jca CBxAu|zxu=zBx=u|zxu=z
39 sseq1 y=u|zxu=zyBu|zxu=zB
40 unieq y=u|zxu=zy=u|zxu=z
41 40 eqeq2d y=u|zxu=zx=yx=u|zxu=z
42 39 41 anbi12d y=u|zxu=zyBx=yu|zxu=zBx=u|zxu=z
43 38 42 syl5ibrcom CBxAy=u|zxu=zyBx=y
44 43 eximdv CBxAyy=u|zxu=zyyBx=y
45 44 3adant3 CBxABTopOnAyy=u|zxu=zyyBx=y
46 31 45 mpd CBxABTopOnAyyBx=y
47 5 46 syl3an2b CBx𝒫ABTopOnAyyBx=y
48 47 3com23 CBBTopOnAx𝒫AyyBx=y
49 48 3expia CBBTopOnAx𝒫AyyBx=y
50 topontop BTopOnABTop
51 tgtop BToptopGenB=B
52 50 51 syl BTopOnAtopGenB=B
53 52 eleq2d BTopOnAxtopGenBxB
54 eltg3 BTopOnAxtopGenByyBx=y
55 53 54 bitr3d BTopOnAxByyBx=y
56 55 adantl CBBTopOnAxByyBx=y
57 49 56 sylibrd CBBTopOnAx𝒫AxB
58 57 ssrdv CBBTopOnA𝒫AB
59 4 58 eqssd CBBTopOnAB=𝒫A