Description: This is the core of the proof of dissneq , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dissneq.c | |
|
Assertion | dissneqlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dissneq.c | |
|
2 | topgele | |
|
3 | 2 | adantl | |
4 | 3 | simprd | |
5 | velpw | |
|
6 | simp3 | |
|
7 | df-ima | |
|
8 | resmpt | |
|
9 | 8 | rneqd | |
10 | 7 9 | eqtrid | |
11 | rnmptsn | |
|
12 | 10 11 | eqtrdi | |
13 | imassrn | |
|
14 | 12 13 | eqsstrrdi | |
15 | rnmptsn | |
|
16 | 14 15 | sseqtrdi | |
17 | sneq | |
|
18 | 17 | eqeq2d | |
19 | 18 | cbvrexvw | |
20 | 19 | abbii | |
21 | 1 20 | eqtri | |
22 | 16 21 | sseqtrrdi | |
23 | 22 | adantl | |
24 | sstr | |
|
25 | 24 | expcom | |
26 | 25 | adantr | |
27 | 23 26 | mpd | |
28 | 27 | 3adant3 | |
29 | 6 28 | ssexd | |
30 | isset | |
|
31 | 29 30 | sylib | |
32 | eqid | |
|
33 | eqid | |
|
34 | 32 33 | mptsnun | |
35 | 12 | unieqd | |
36 | 34 35 | eqtrd | |
37 | 36 | adantl | |
38 | 27 37 | jca | |
39 | sseq1 | |
|
40 | unieq | |
|
41 | 40 | eqeq2d | |
42 | 39 41 | anbi12d | |
43 | 38 42 | syl5ibrcom | |
44 | 43 | eximdv | |
45 | 44 | 3adant3 | |
46 | 31 45 | mpd | |
47 | 5 46 | syl3an2b | |
48 | 47 | 3com23 | |
49 | 48 | 3expia | |
50 | topontop | |
|
51 | tgtop | |
|
52 | 50 51 | syl | |
53 | 52 | eleq2d | |
54 | eltg3 | |
|
55 | 53 54 | bitr3d | |
56 | 55 | adantl | |
57 | 49 56 | sylibrd | |
58 | 57 | ssrdv | |
59 | 4 58 | eqssd | |