Metamath Proof Explorer


Theorem divnumden

Description: Calculate the reduced form of a quotient using gcd . (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion divnumden ABnumerAB=AAgcdBdenomAB=BAgcdB

Proof

Step Hyp Ref Expression
1 simpl ABA
2 nnz BB
3 2 adantl ABB
4 nnne0 BB0
5 4 neneqd B¬B=0
6 5 adantl AB¬B=0
7 6 intnand AB¬A=0B=0
8 gcdn0cl AB¬A=0B=0AgcdB
9 1 3 7 8 syl21anc ABAgcdB
10 gcddvds ABAgcdBAAgcdBB
11 2 10 sylan2 ABAgcdBAAgcdBB
12 gcddiv ABAgcdBAgcdBAAgcdBBAgcdBAgcdB=AAgcdBgcdBAgcdB
13 1 3 9 11 12 syl31anc ABAgcdBAgcdB=AAgcdBgcdBAgcdB
14 9 nncnd ABAgcdB
15 9 nnne0d ABAgcdB0
16 14 15 dividd ABAgcdBAgcdB=1
17 13 16 eqtr3d ABAAgcdBgcdBAgcdB=1
18 zcn AA
19 18 adantr ABA
20 nncn BB
21 20 adantl ABB
22 4 adantl ABB0
23 divcan7 ABB0AgcdBAgcdB0AAgcdBBAgcdB=AB
24 23 eqcomd ABB0AgcdBAgcdB0AB=AAgcdBBAgcdB
25 19 21 22 14 15 24 syl122anc ABAB=AAgcdBBAgcdB
26 znq ABAB
27 11 simpld ABAgcdBA
28 gcdcl ABAgcdB0
29 28 nn0zd ABAgcdB
30 2 29 sylan2 ABAgcdB
31 dvdsval2 AgcdBAgcdB0AAgcdBAAAgcdB
32 30 15 1 31 syl3anc ABAgcdBAAAgcdB
33 27 32 mpbid ABAAgcdB
34 11 simprd ABAgcdBB
35 simpr ABB
36 nndivdvds BAgcdBAgcdBBBAgcdB
37 35 9 36 syl2anc ABAgcdBBBAgcdB
38 34 37 mpbid ABBAgcdB
39 qnumdenbi ABAAgcdBBAgcdBAAgcdBgcdBAgcdB=1AB=AAgcdBBAgcdBnumerAB=AAgcdBdenomAB=BAgcdB
40 26 33 38 39 syl3anc ABAAgcdBgcdBAgcdB=1AB=AAgcdBBAgcdBnumerAB=AAgcdBdenomAB=BAgcdB
41 17 25 40 mpbi2and ABnumerAB=AAgcdBdenomAB=BAgcdB