Description: Calculate the reduced form of a quotient using gcd . (Contributed by Stefan O'Rear, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | divnumden | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | nnz | |
|
3 | 2 | adantl | |
4 | nnne0 | |
|
5 | 4 | neneqd | |
6 | 5 | adantl | |
7 | 6 | intnand | |
8 | gcdn0cl | |
|
9 | 1 3 7 8 | syl21anc | |
10 | gcddvds | |
|
11 | 2 10 | sylan2 | |
12 | gcddiv | |
|
13 | 1 3 9 11 12 | syl31anc | |
14 | 9 | nncnd | |
15 | 9 | nnne0d | |
16 | 14 15 | dividd | |
17 | 13 16 | eqtr3d | |
18 | zcn | |
|
19 | 18 | adantr | |
20 | nncn | |
|
21 | 20 | adantl | |
22 | 4 | adantl | |
23 | divcan7 | |
|
24 | 23 | eqcomd | |
25 | 19 21 22 14 15 24 | syl122anc | |
26 | znq | |
|
27 | 11 | simpld | |
28 | gcdcl | |
|
29 | 28 | nn0zd | |
30 | 2 29 | sylan2 | |
31 | dvdsval2 | |
|
32 | 30 15 1 31 | syl3anc | |
33 | 27 32 | mpbid | |
34 | 11 | simprd | |
35 | simpr | |
|
36 | nndivdvds | |
|
37 | 35 9 36 | syl2anc | |
38 | 34 37 | mpbid | |
39 | qnumdenbi | |
|
40 | 26 33 38 39 | syl3anc | |
41 | 17 25 40 | mpbi2and | |