Metamath Proof Explorer


Theorem djuun

Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djuun inlAinrB=A⊔︀B

Proof

Step Hyp Ref Expression
1 elun xinlAinrBxinlAxinrB
2 djulf1o inl:V1-1 onto×V
3 f1ofn inl:V1-1 onto×VinlFnV
4 2 3 ax-mp inlFnV
5 ssv AV
6 fvelimab inlFnVAVxinlAuAinlu=x
7 4 5 6 mp2an xinlAuAinlu=x
8 7 biimpi xinlAuAinlu=x
9 simprr xinlAuAinlu=xinlu=x
10 vex uV
11 opex uV
12 opeq2 z=uz=u
13 df-inl inl=zVz
14 12 13 fvmptg uVuVinlu=u
15 10 11 14 mp2an inlu=u
16 0ex V
17 16 snid
18 opelxpi uAu×A
19 17 18 mpan uAu×A
20 19 ad2antrl xinlAuAinlu=xu×A
21 15 20 eqeltrid xinlAuAinlu=xinlu×A
22 9 21 eqeltrrd xinlAuAinlu=xx×A
23 8 22 rexlimddv xinlAx×A
24 elun1 x×Ax×A1𝑜×B
25 23 24 syl xinlAx×A1𝑜×B
26 df-dju A⊔︀B=×A1𝑜×B
27 25 26 eleqtrrdi xinlAxA⊔︀B
28 djurf1o inr:V1-1 onto1𝑜×V
29 f1ofn inr:V1-1 onto1𝑜×VinrFnV
30 28 29 ax-mp inrFnV
31 ssv BV
32 fvelimab inrFnVBVxinrBuBinru=x
33 30 31 32 mp2an xinrBuBinru=x
34 33 biimpi xinrBuBinru=x
35 simprr xinrBuBinru=xinru=x
36 opex 1𝑜uV
37 opeq2 z=u1𝑜z=1𝑜u
38 df-inr inr=zV1𝑜z
39 37 38 fvmptg uV1𝑜uVinru=1𝑜u
40 10 36 39 mp2an inru=1𝑜u
41 1oex 1𝑜V
42 41 snid 1𝑜1𝑜
43 opelxpi 1𝑜1𝑜uB1𝑜u1𝑜×B
44 42 43 mpan uB1𝑜u1𝑜×B
45 44 ad2antrl xinrBuBinru=x1𝑜u1𝑜×B
46 40 45 eqeltrid xinrBuBinru=xinru1𝑜×B
47 35 46 eqeltrrd xinrBuBinru=xx1𝑜×B
48 34 47 rexlimddv xinrBx1𝑜×B
49 elun2 x1𝑜×Bx×A1𝑜×B
50 48 49 syl xinrBx×A1𝑜×B
51 50 26 eleqtrrdi xinrBxA⊔︀B
52 27 51 jaoi xinlAxinrBxA⊔︀B
53 1 52 sylbi xinlAinrBxA⊔︀B
54 53 ssriv inlAinrBA⊔︀B
55 djur xA⊔︀ByAx=inlyyBx=inry
56 vex yV
57 f1odm inl:V1-1 onto×Vdominl=V
58 2 57 ax-mp dominl=V
59 56 58 eleqtrri ydominl
60 simpl yAx=inlyyA
61 13 funmpt2 Funinl
62 funfvima FuninlydominlyAinlyinlA
63 61 62 mpan ydominlyAinlyinlA
64 59 60 63 mpsyl yAx=inlyinlyinlA
65 eleq1 x=inlyxinlAinlyinlA
66 65 adantl yAx=inlyxinlAinlyinlA
67 64 66 mpbird yAx=inlyxinlA
68 67 rexlimiva yAx=inlyxinlA
69 f1odm inr:V1-1 onto1𝑜×Vdominr=V
70 28 69 ax-mp dominr=V
71 56 70 eleqtrri ydominr
72 simpl yBx=inryyB
73 f1ofun inr:V1-1 onto1𝑜×VFuninr
74 28 73 ax-mp Funinr
75 funfvima FuninrydominryBinryinrB
76 74 75 mpan ydominryBinryinrB
77 71 72 76 mpsyl yBx=inryinryinrB
78 eleq1 x=inryxinrBinryinrB
79 78 adantl yBx=inryxinrBinryinrB
80 77 79 mpbird yBx=inryxinrB
81 80 rexlimiva yBx=inryxinrB
82 68 81 orim12i yAx=inlyyBx=inryxinlAxinrB
83 55 82 syl xA⊔︀BxinlAxinrB
84 83 1 sylibr xA⊔︀BxinlAinrB
85 84 ssriv A⊔︀BinlAinrB
86 54 85 eqssi inlAinrB=A⊔︀B