Metamath Proof Explorer


Theorem dmdprdsplit2

Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdsplit.2 φS:ISubGrpG
dprdsplit.i φCD=
dprdsplit.u φI=CD
dmdprdsplit.z Z=CntzG
dmdprdsplit.0 0˙=0G
dmdprdsplit2.1 φGdomDProdSC
dmdprdsplit2.2 φGdomDProdSD
dmdprdsplit2.3 φGDProdSCZGDProdSD
dmdprdsplit2.4 φGDProdSCGDProdSD=0˙
Assertion dmdprdsplit2 φGdomDProdS

Proof

Step Hyp Ref Expression
1 dprdsplit.2 φS:ISubGrpG
2 dprdsplit.i φCD=
3 dprdsplit.u φI=CD
4 dmdprdsplit.z Z=CntzG
5 dmdprdsplit.0 0˙=0G
6 dmdprdsplit2.1 φGdomDProdSC
7 dmdprdsplit2.2 φGdomDProdSD
8 dmdprdsplit2.3 φGDProdSCZGDProdSD
9 dmdprdsplit2.4 φGDProdSCGDProdSD=0˙
10 eqid mrClsSubGrpG=mrClsSubGrpG
11 dprdgrp GdomDProdSCGGrp
12 6 11 syl φGGrp
13 ssun1 CCD
14 13 3 sseqtrrid φCI
15 1 14 fssresd φSC:CSubGrpG
16 15 fdmd φdomSC=C
17 6 16 dprddomcld φCV
18 ssun2 DCD
19 18 3 sseqtrrid φDI
20 1 19 fssresd φSD:DSubGrpG
21 20 fdmd φdomSD=D
22 7 21 dprddomcld φDV
23 unexg CVDVCDV
24 17 22 23 syl2anc φCDV
25 3 24 eqeltrd φIV
26 3 eleq2d φxIxCD
27 elun xCDxCxD
28 26 27 bitrdi φxIxCxD
29 1 2 3 4 5 6 7 8 9 10 dmdprdsplit2lem φxCyIxySxZSySxmrClsSubGrpGSIx0˙
30 incom CD=DC
31 30 2 eqtr3id φDC=
32 uncom CD=DC
33 3 32 eqtrdi φI=DC
34 dprdsubg GdomDProdSCGDProdSCSubGrpG
35 6 34 syl φGDProdSCSubGrpG
36 dprdsubg GdomDProdSDGDProdSDSubGrpG
37 7 36 syl φGDProdSDSubGrpG
38 4 35 37 8 cntzrecd φGDProdSDZGDProdSC
39 incom GDProdSCGDProdSD=GDProdSDGDProdSC
40 39 9 eqtr3id φGDProdSDGDProdSC=0˙
41 1 31 33 4 5 7 6 38 40 10 dmdprdsplit2lem φxDyIxySxZSySxmrClsSubGrpGSIx0˙
42 29 41 jaodan φxCxDyIxySxZSySxmrClsSubGrpGSIx0˙
43 42 simpld φxCxDyIxySxZSy
44 43 ex φxCxDyIxySxZSy
45 28 44 sylbid φxIyIxySxZSy
46 45 3imp2 φxIyIxySxZSy
47 28 biimpa φxIxCxD
48 29 simprd φxCSxmrClsSubGrpGSIx0˙
49 41 simprd φxDSxmrClsSubGrpGSIx0˙
50 48 49 jaodan φxCxDSxmrClsSubGrpGSIx0˙
51 47 50 syldan φxISxmrClsSubGrpGSIx0˙
52 4 5 10 12 25 1 46 51 dmdprdd φGdomDProdS