Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdsplit.2 | |
|
dprdsplit.i | |
||
dprdsplit.u | |
||
dmdprdsplit.z | |
||
dmdprdsplit.0 | |
||
dmdprdsplit2.1 | |
||
dmdprdsplit2.2 | |
||
dmdprdsplit2.3 | |
||
dmdprdsplit2.4 | |
||
Assertion | dmdprdsplit2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdsplit.2 | |
|
2 | dprdsplit.i | |
|
3 | dprdsplit.u | |
|
4 | dmdprdsplit.z | |
|
5 | dmdprdsplit.0 | |
|
6 | dmdprdsplit2.1 | |
|
7 | dmdprdsplit2.2 | |
|
8 | dmdprdsplit2.3 | |
|
9 | dmdprdsplit2.4 | |
|
10 | eqid | |
|
11 | dprdgrp | |
|
12 | 6 11 | syl | |
13 | ssun1 | |
|
14 | 13 3 | sseqtrrid | |
15 | 1 14 | fssresd | |
16 | 15 | fdmd | |
17 | 6 16 | dprddomcld | |
18 | ssun2 | |
|
19 | 18 3 | sseqtrrid | |
20 | 1 19 | fssresd | |
21 | 20 | fdmd | |
22 | 7 21 | dprddomcld | |
23 | unexg | |
|
24 | 17 22 23 | syl2anc | |
25 | 3 24 | eqeltrd | |
26 | 3 | eleq2d | |
27 | elun | |
|
28 | 26 27 | bitrdi | |
29 | 1 2 3 4 5 6 7 8 9 10 | dmdprdsplit2lem | |
30 | incom | |
|
31 | 30 2 | eqtr3id | |
32 | uncom | |
|
33 | 3 32 | eqtrdi | |
34 | dprdsubg | |
|
35 | 6 34 | syl | |
36 | dprdsubg | |
|
37 | 7 36 | syl | |
38 | 4 35 37 8 | cntzrecd | |
39 | incom | |
|
40 | 39 9 | eqtr3id | |
41 | 1 31 33 4 5 7 6 38 40 10 | dmdprdsplit2lem | |
42 | 29 41 | jaodan | |
43 | 42 | simpld | |
44 | 43 | ex | |
45 | 28 44 | sylbid | |
46 | 45 | 3imp2 | |
47 | 28 | biimpa | |
48 | 29 | simprd | |
49 | 41 | simprd | |
50 | 48 49 | jaodan | |
51 | 47 50 | syldan | |
52 | 4 5 10 12 25 1 46 51 | dmdprdd | |