| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmncan.1 |
|
| 2 |
|
dmncan.2 |
|
| 3 |
|
dmncan.3 |
|
| 4 |
|
dmncan.4 |
|
| 5 |
|
dmnrngo |
|
| 6 |
|
eqid |
|
| 7 |
1 2 3 6
|
rngosubdi |
|
| 8 |
5 7
|
sylan |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
1
|
rngogrpo |
|
| 12 |
5 11
|
syl |
|
| 13 |
3 6
|
grpodivcl |
|
| 14 |
13
|
3expb |
|
| 15 |
12 14
|
sylan |
|
| 16 |
15
|
adantlr |
|
| 17 |
1 2 3 4
|
dmnnzd |
|
| 18 |
17
|
3exp2 |
|
| 19 |
18
|
imp31 |
|
| 20 |
16 19
|
syldan |
|
| 21 |
20
|
exp43 |
|
| 22 |
21
|
3imp2 |
|
| 23 |
|
neor |
|
| 24 |
22 23
|
imbitrdi |
|
| 25 |
24
|
com23 |
|
| 26 |
25
|
imp |
|
| 27 |
10 26
|
sylbird |
|
| 28 |
12
|
adantr |
|
| 29 |
1 2 3
|
rngocl |
|
| 30 |
29
|
3adant3r3 |
|
| 31 |
5 30
|
sylan |
|
| 32 |
1 2 3
|
rngocl |
|
| 33 |
32
|
3adant3r2 |
|
| 34 |
5 33
|
sylan |
|
| 35 |
3 4 6
|
grpoeqdivid |
|
| 36 |
28 31 34 35
|
syl3anc |
|
| 37 |
36
|
adantr |
|
| 38 |
3 4 6
|
grpoeqdivid |
|
| 39 |
38
|
3expb |
|
| 40 |
12 39
|
sylan |
|
| 41 |
40
|
3adantr1 |
|
| 42 |
41
|
adantr |
|
| 43 |
27 37 42
|
3imtr4d |
|