Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmncan.1 | |
|
dmncan.2 | |
||
dmncan.3 | |
||
dmncan.4 | |
||
Assertion | dmncan1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmncan.1 | |
|
2 | dmncan.2 | |
|
3 | dmncan.3 | |
|
4 | dmncan.4 | |
|
5 | dmnrngo | |
|
6 | eqid | |
|
7 | 1 2 3 6 | rngosubdi | |
8 | 5 7 | sylan | |
9 | 8 | adantr | |
10 | 9 | eqeq1d | |
11 | 1 | rngogrpo | |
12 | 5 11 | syl | |
13 | 3 6 | grpodivcl | |
14 | 13 | 3expb | |
15 | 12 14 | sylan | |
16 | 15 | adantlr | |
17 | 1 2 3 4 | dmnnzd | |
18 | 17 | 3exp2 | |
19 | 18 | imp31 | |
20 | 16 19 | syldan | |
21 | 20 | exp43 | |
22 | 21 | 3imp2 | |
23 | neor | |
|
24 | 22 23 | imbitrdi | |
25 | 24 | com23 | |
26 | 25 | imp | |
27 | 10 26 | sylbird | |
28 | 12 | adantr | |
29 | 1 2 3 | rngocl | |
30 | 29 | 3adant3r3 | |
31 | 5 30 | sylan | |
32 | 1 2 3 | rngocl | |
33 | 32 | 3adant3r2 | |
34 | 5 33 | sylan | |
35 | 3 4 6 | grpoeqdivid | |
36 | 28 31 34 35 | syl3anc | |
37 | 36 | adantr | |
38 | 3 4 6 | grpoeqdivid | |
39 | 38 | 3expb | |
40 | 12 39 | sylan | |
41 | 40 | 3adantr1 | |
42 | 41 | adantr | |
43 | 27 37 42 | 3imtr4d | |