Metamath Proof Explorer


Theorem doch2val2

Description: Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014)

Ref Expression
Hypotheses doch2val2.h H = LHyp K
doch2val2.i I = DIsoH K W
doch2val2.u U = DVecH K W
doch2val2.v V = Base U
doch2val2.o ˙ = ocH K W
doch2val2.k φ K HL W H
doch2val2.x φ X V
Assertion doch2val2 φ ˙ ˙ X = z ran I | X z

Proof

Step Hyp Ref Expression
1 doch2val2.h H = LHyp K
2 doch2val2.i I = DIsoH K W
3 doch2val2.u U = DVecH K W
4 doch2val2.v V = Base U
5 doch2val2.o ˙ = ocH K W
6 doch2val2.k φ K HL W H
7 doch2val2.x φ X V
8 eqid oc K = oc K
9 8 1 2 3 4 5 dochval2 K HL W H X V ˙ X = I oc K I -1 z ran I | X z
10 6 7 9 syl2anc φ ˙ X = I oc K I -1 z ran I | X z
11 10 fveq2d φ ˙ ˙ X = ˙ I oc K I -1 z ran I | X z
12 6 simpld φ K HL
13 hlop K HL K OP
14 12 13 syl φ K OP
15 ssrab2 z ran I | X z ran I
16 15 a1i φ z ran I | X z ran I
17 1 2 3 4 dih1rn K HL W H V ran I
18 6 17 syl φ V ran I
19 sseq2 z = V X z X V
20 19 elrab V z ran I | X z V ran I X V
21 18 7 20 sylanbrc φ V z ran I | X z
22 21 ne0d φ z ran I | X z
23 1 2 dihintcl K HL W H z ran I | X z ran I z ran I | X z z ran I | X z ran I
24 6 16 22 23 syl12anc φ z ran I | X z ran I
25 eqid Base K = Base K
26 25 1 2 dihcnvcl K HL W H z ran I | X z ran I I -1 z ran I | X z Base K
27 6 24 26 syl2anc φ I -1 z ran I | X z Base K
28 25 8 opoccl K OP I -1 z ran I | X z Base K oc K I -1 z ran I | X z Base K
29 14 27 28 syl2anc φ oc K I -1 z ran I | X z Base K
30 25 8 1 2 5 dochvalr2 K HL W H oc K I -1 z ran I | X z Base K ˙ I oc K I -1 z ran I | X z = I oc K oc K I -1 z ran I | X z
31 6 29 30 syl2anc φ ˙ I oc K I -1 z ran I | X z = I oc K oc K I -1 z ran I | X z
32 25 8 opococ K OP I -1 z ran I | X z Base K oc K oc K I -1 z ran I | X z = I -1 z ran I | X z
33 14 27 32 syl2anc φ oc K oc K I -1 z ran I | X z = I -1 z ran I | X z
34 33 fveq2d φ I oc K oc K I -1 z ran I | X z = I I -1 z ran I | X z
35 1 2 dihcnvid2 K HL W H z ran I | X z ran I I I -1 z ran I | X z = z ran I | X z
36 6 24 35 syl2anc φ I I -1 z ran I | X z = z ran I | X z
37 34 36 eqtrd φ I oc K oc K I -1 z ran I | X z = z ran I | X z
38 11 31 37 3eqtrd φ ˙ ˙ X = z ran I | X z