Description: Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. ( pexmidALTN analog.) (Contributed by NM, 15-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochexmid.h | |
|
dochexmid.o | |
||
dochexmid.u | |
||
dochexmid.v | |
||
dochexmid.s | |
||
dochexmid.p | |
||
dochexmid.k | |
||
dochexmid.x | |
||
dochexmid.c | |
||
Assertion | dochexmid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmid.h | |
|
2 | dochexmid.o | |
|
3 | dochexmid.u | |
|
4 | dochexmid.v | |
|
5 | dochexmid.s | |
|
6 | dochexmid.p | |
|
7 | dochexmid.k | |
|
8 | dochexmid.x | |
|
9 | dochexmid.c | |
|
10 | id | |
|
11 | fveq2 | |
|
12 | 10 11 | oveq12d | |
13 | 1 3 7 | dvhlmod | |
14 | eqid | |
|
15 | 4 14 | lmod0vcl | |
16 | 13 15 | syl | |
17 | 16 | snssd | |
18 | 1 3 4 5 2 | dochlss | |
19 | 7 17 18 | syl2anc | |
20 | 5 | lsssubg | |
21 | 13 19 20 | syl2anc | |
22 | 14 6 | lsm02 | |
23 | 21 22 | syl | |
24 | 1 3 2 4 14 | doch0 | |
25 | 7 24 | syl | |
26 | 23 25 | eqtrd | |
27 | 12 26 | sylan9eqr | |
28 | eqid | |
|
29 | eqid | |
|
30 | 7 | adantr | |
31 | 8 | adantr | |
32 | simpr | |
|
33 | 9 | adantr | |
34 | 1 2 3 4 5 28 6 29 30 31 14 32 33 | dochexmidlem8 | |
35 | 27 34 | pm2.61dane | |