Metamath Proof Explorer


Theorem dochexmid

Description: Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. ( pexmidALTN analog.) (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmid.h H = LHyp K
dochexmid.o ˙ = ocH K W
dochexmid.u U = DVecH K W
dochexmid.v V = Base U
dochexmid.s S = LSubSp U
dochexmid.p ˙ = LSSum U
dochexmid.k φ K HL W H
dochexmid.x φ X S
dochexmid.c φ ˙ ˙ X = X
Assertion dochexmid φ X ˙ ˙ X = V

Proof

Step Hyp Ref Expression
1 dochexmid.h H = LHyp K
2 dochexmid.o ˙ = ocH K W
3 dochexmid.u U = DVecH K W
4 dochexmid.v V = Base U
5 dochexmid.s S = LSubSp U
6 dochexmid.p ˙ = LSSum U
7 dochexmid.k φ K HL W H
8 dochexmid.x φ X S
9 dochexmid.c φ ˙ ˙ X = X
10 id X = 0 U X = 0 U
11 fveq2 X = 0 U ˙ X = ˙ 0 U
12 10 11 oveq12d X = 0 U X ˙ ˙ X = 0 U ˙ ˙ 0 U
13 1 3 7 dvhlmod φ U LMod
14 eqid 0 U = 0 U
15 4 14 lmod0vcl U LMod 0 U V
16 13 15 syl φ 0 U V
17 16 snssd φ 0 U V
18 1 3 4 5 2 dochlss K HL W H 0 U V ˙ 0 U S
19 7 17 18 syl2anc φ ˙ 0 U S
20 5 lsssubg U LMod ˙ 0 U S ˙ 0 U SubGrp U
21 13 19 20 syl2anc φ ˙ 0 U SubGrp U
22 14 6 lsm02 ˙ 0 U SubGrp U 0 U ˙ ˙ 0 U = ˙ 0 U
23 21 22 syl φ 0 U ˙ ˙ 0 U = ˙ 0 U
24 1 3 2 4 14 doch0 K HL W H ˙ 0 U = V
25 7 24 syl φ ˙ 0 U = V
26 23 25 eqtrd φ 0 U ˙ ˙ 0 U = V
27 12 26 sylan9eqr φ X = 0 U X ˙ ˙ X = V
28 eqid LSpan U = LSpan U
29 eqid LSAtoms U = LSAtoms U
30 7 adantr φ X 0 U K HL W H
31 8 adantr φ X 0 U X S
32 simpr φ X 0 U X 0 U
33 9 adantr φ X 0 U ˙ ˙ X = X
34 1 2 3 4 5 28 6 29 30 31 14 32 33 dochexmidlem8 φ X 0 U X ˙ ˙ X = V
35 27 34 pm2.61dane φ X ˙ ˙ X = V