Metamath Proof Explorer


Theorem dochexmid

Description: Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. ( pexmidALTN analog.) (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmid.h H=LHypK
dochexmid.o ˙=ocHKW
dochexmid.u U=DVecHKW
dochexmid.v V=BaseU
dochexmid.s S=LSubSpU
dochexmid.p ˙=LSSumU
dochexmid.k φKHLWH
dochexmid.x φXS
dochexmid.c φ˙˙X=X
Assertion dochexmid φX˙˙X=V

Proof

Step Hyp Ref Expression
1 dochexmid.h H=LHypK
2 dochexmid.o ˙=ocHKW
3 dochexmid.u U=DVecHKW
4 dochexmid.v V=BaseU
5 dochexmid.s S=LSubSpU
6 dochexmid.p ˙=LSSumU
7 dochexmid.k φKHLWH
8 dochexmid.x φXS
9 dochexmid.c φ˙˙X=X
10 id X=0UX=0U
11 fveq2 X=0U˙X=˙0U
12 10 11 oveq12d X=0UX˙˙X=0U˙˙0U
13 1 3 7 dvhlmod φULMod
14 eqid 0U=0U
15 4 14 lmod0vcl ULMod0UV
16 13 15 syl φ0UV
17 16 snssd φ0UV
18 1 3 4 5 2 dochlss KHLWH0UV˙0US
19 7 17 18 syl2anc φ˙0US
20 5 lsssubg ULMod˙0US˙0USubGrpU
21 13 19 20 syl2anc φ˙0USubGrpU
22 14 6 lsm02 ˙0USubGrpU0U˙˙0U=˙0U
23 21 22 syl φ0U˙˙0U=˙0U
24 1 3 2 4 14 doch0 KHLWH˙0U=V
25 7 24 syl φ˙0U=V
26 23 25 eqtrd φ0U˙˙0U=V
27 12 26 sylan9eqr φX=0UX˙˙X=V
28 eqid LSpanU=LSpanU
29 eqid LSAtomsU=LSAtomsU
30 7 adantr φX0UKHLWH
31 8 adantr φX0UXS
32 simpr φX0UX0U
33 9 adantr φX0U˙˙X=X
34 1 2 3 4 5 28 6 29 30 31 14 32 33 dochexmidlem8 φX0UX˙˙X=V
35 27 34 pm2.61dane φX˙˙X=V