| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
|
| 2 |
|
dochexmidlem1.o |
|
| 3 |
|
dochexmidlem1.u |
|
| 4 |
|
dochexmidlem1.v |
|
| 5 |
|
dochexmidlem1.s |
|
| 6 |
|
dochexmidlem1.n |
|
| 7 |
|
dochexmidlem1.p |
|
| 8 |
|
dochexmidlem1.a |
|
| 9 |
|
dochexmidlem1.k |
|
| 10 |
|
dochexmidlem1.x |
|
| 11 |
|
dochexmidlem6.pp |
|
| 12 |
|
dochexmidlem6.z |
|
| 13 |
|
dochexmidlem6.m |
|
| 14 |
|
dochexmidlem6.xn |
|
| 15 |
|
dochexmidlem6.c |
|
| 16 |
|
dochexmidlem6.pl |
|
| 17 |
1 3 9
|
dvhlmod |
|
| 18 |
5
|
lsssssubg |
|
| 19 |
17 18
|
syl |
|
| 20 |
19 10
|
sseldd |
|
| 21 |
5 8 17 11
|
lsatlssel |
|
| 22 |
19 21
|
sseldd |
|
| 23 |
7
|
lsmub2 |
|
| 24 |
20 22 23
|
syl2anc |
|
| 25 |
24 13
|
sseqtrrdi |
|
| 26 |
4 5
|
lssss |
|
| 27 |
10 26
|
syl |
|
| 28 |
1 3 4 5 2
|
dochlss |
|
| 29 |
9 27 28
|
syl2anc |
|
| 30 |
19 29
|
sseldd |
|
| 31 |
7
|
lsmub1 |
|
| 32 |
20 30 31
|
syl2anc |
|
| 33 |
|
sstr2 |
|
| 34 |
32 33
|
syl5com |
|
| 35 |
16 34
|
mtod |
|
| 36 |
|
sseq2 |
|
| 37 |
36
|
biimpcd |
|
| 38 |
37
|
necon3bd |
|
| 39 |
25 35 38
|
sylc |
|