Metamath Proof Explorer


Theorem dochexmidlem7

Description: Lemma for dochexmid . Contradict dochexmidlem6 . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem6.pp φpA
dochexmidlem6.z 0˙=0U
dochexmidlem6.m M=X˙p
dochexmidlem6.xn φX0˙
dochexmidlem6.c φ˙˙X=X
dochexmidlem6.pl φ¬pX˙˙X
Assertion dochexmidlem7 φMX

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem6.pp φpA
12 dochexmidlem6.z 0˙=0U
13 dochexmidlem6.m M=X˙p
14 dochexmidlem6.xn φX0˙
15 dochexmidlem6.c φ˙˙X=X
16 dochexmidlem6.pl φ¬pX˙˙X
17 1 3 9 dvhlmod φULMod
18 5 lsssssubg ULModSSubGrpU
19 17 18 syl φSSubGrpU
20 19 10 sseldd φXSubGrpU
21 5 8 17 11 lsatlssel φpS
22 19 21 sseldd φpSubGrpU
23 7 lsmub2 XSubGrpUpSubGrpUpX˙p
24 20 22 23 syl2anc φpX˙p
25 24 13 sseqtrrdi φpM
26 4 5 lssss XSXV
27 10 26 syl φXV
28 1 3 4 5 2 dochlss KHLWHXV˙XS
29 9 27 28 syl2anc φ˙XS
30 19 29 sseldd φ˙XSubGrpU
31 7 lsmub1 XSubGrpU˙XSubGrpUXX˙˙X
32 20 30 31 syl2anc φXX˙˙X
33 sstr2 pXXX˙˙XpX˙˙X
34 32 33 syl5com φpXpX˙˙X
35 16 34 mtod φ¬pX
36 sseq2 M=XpMpX
37 36 biimpcd pMM=XpX
38 37 necon3bd pM¬pXMX
39 25 35 38 sylc φMX