Metamath Proof Explorer


Theorem dochsnkr

Description: A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses dochsnkr.h H=LHypK
dochsnkr.o ˙=ocHKW
dochsnkr.u U=DVecHKW
dochsnkr.v V=BaseU
dochsnkr.z 0˙=0U
dochsnkr.f F=LFnlU
dochsnkr.l L=LKerU
dochsnkr.k φKHLWH
dochsnkr.g φGF
dochsnkr.x φX˙LG0˙
Assertion dochsnkr φLG=˙X

Proof

Step Hyp Ref Expression
1 dochsnkr.h H=LHypK
2 dochsnkr.o ˙=ocHKW
3 dochsnkr.u U=DVecHKW
4 dochsnkr.v V=BaseU
5 dochsnkr.z 0˙=0U
6 dochsnkr.f F=LFnlU
7 dochsnkr.l L=LKerU
8 dochsnkr.k φKHLWH
9 dochsnkr.g φGF
10 dochsnkr.x φX˙LG0˙
11 eqid LSpanU=LSpanU
12 eqid LSAtomsU=LSAtomsU
13 1 3 8 dvhlvec φULVec
14 1 2 3 4 5 6 7 8 9 10 12 dochsnkrlem2 φ˙LGLSAtomsU
15 10 eldifad φX˙LG
16 eldifsni X˙LG0˙X0˙
17 10 16 syl φX0˙
18 5 11 12 13 14 15 17 lsatel φ˙LG=LSpanUX
19 18 fveq2d φ˙˙LG=˙LSpanUX
20 1 2 3 4 5 6 7 8 9 10 dochsnkrlem3 φ˙˙LG=LG
21 1 3 8 dvhlmod φULMod
22 4 6 7 21 9 lkrssv φLGV
23 1 3 4 2 dochssv KHLWHLGV˙LGV
24 8 22 23 syl2anc φ˙LGV
25 24 ssdifssd φ˙LG0˙V
26 25 10 sseldd φXV
27 26 snssd φXV
28 1 3 2 4 11 8 27 dochocsp φ˙LSpanUX=˙X
29 19 20 28 3eqtr3d φLG=˙X