Metamath Proof Explorer


Theorem domnmsuppn0

Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r R=BaseM
Assertion domnmsuppn0 MDomnVXCRC0MARVvVCMAvsupp0M=Asupp0M

Proof

Step Hyp Ref Expression
1 rmsuppss.r R=BaseM
2 elmapi ARVA:VR
3 fdm A:VRdomA=V
4 3 eqcomd A:VRV=domA
5 2 4 syl ARVV=domA
6 5 3ad2ant3 MDomnVXCRC0MARVV=domA
7 oveq2 Aw=0MCMAw=CM0M
8 domnring MDomnMRing
9 8 adantr MDomnVXMRing
10 simpl CRC0MCR
11 9 10 anim12i MDomnVXCRC0MMRingCR
12 11 3adant3 MDomnVXCRC0MARVMRingCR
13 eqid M=M
14 eqid 0M=0M
15 1 13 14 ringrz MRingCRCM0M=0M
16 12 15 syl MDomnVXCRC0MARVCM0M=0M
17 16 adantr MDomnVXCRC0MARVwVCM0M=0M
18 7 17 sylan9eqr MDomnVXCRC0MARVwVAw=0MCMAw=0M
19 18 ex MDomnVXCRC0MARVwVAw=0MCMAw=0M
20 19 necon3d MDomnVXCRC0MARVwVCMAw0MAw0M
21 simpl1l MDomnVXCRC0MARVwVMDomn
22 21 adantr MDomnVXCRC0MARVwVAw0MMDomn
23 simpll2 MDomnVXCRC0MARVwVAw0MCRC0M
24 ffvelcdm A:VRwVAwR
25 24 ex A:VRwVAwR
26 2 25 syl ARVwVAwR
27 26 3ad2ant3 MDomnVXCRC0MARVwVAwR
28 27 imp MDomnVXCRC0MARVwVAwR
29 28 adantr MDomnVXCRC0MARVwVAw0MAwR
30 simpr MDomnVXCRC0MARVwVAw0MAw0M
31 1 13 14 domnmuln0 MDomnCRC0MAwRAw0MCMAw0M
32 22 23 29 30 31 syl112anc MDomnVXCRC0MARVwVAw0MCMAw0M
33 32 ex MDomnVXCRC0MARVwVAw0MCMAw0M
34 20 33 impbid MDomnVXCRC0MARVwVCMAw0MAw0M
35 6 34 rabeqbidva MDomnVXCRC0MARVwV|CMAw0M=wdomA|Aw0M
36 fveq2 v=wAv=Aw
37 36 oveq2d v=wCMAv=CMAw
38 37 cbvmptv vVCMAv=wVCMAw
39 simp1r MDomnVXCRC0MARVVX
40 fvexd MDomnVXCRC0MARV0MV
41 ovexd MDomnVXCRC0MARVwVCMAwV
42 38 39 40 41 mptsuppd MDomnVXCRC0MARVvVCMAvsupp0M=wV|CMAw0M
43 elmapfun ARVFunA
44 43 3ad2ant3 MDomnVXCRC0MARVFunA
45 simp3 MDomnVXCRC0MARVARV
46 suppval1 FunAARV0MVAsupp0M=wdomA|Aw0M
47 44 45 40 46 syl3anc MDomnVXCRC0MARVAsupp0M=wdomA|Aw0M
48 35 42 47 3eqtr4d MDomnVXCRC0MARVvVCMAvsupp0M=Asupp0M