Metamath Proof Explorer


Theorem domnmsuppn0

Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r R = Base M
Assertion domnmsuppn0 M Domn V X C R C 0 M A R V v V C M A v supp 0 M = A supp 0 M

Proof

Step Hyp Ref Expression
1 rmsuppss.r R = Base M
2 elmapi A R V A : V R
3 fdm A : V R dom A = V
4 3 eqcomd A : V R V = dom A
5 2 4 syl A R V V = dom A
6 5 3ad2ant3 M Domn V X C R C 0 M A R V V = dom A
7 oveq2 A w = 0 M C M A w = C M 0 M
8 domnring M Domn M Ring
9 8 adantr M Domn V X M Ring
10 simpl C R C 0 M C R
11 9 10 anim12i M Domn V X C R C 0 M M Ring C R
12 11 3adant3 M Domn V X C R C 0 M A R V M Ring C R
13 eqid M = M
14 eqid 0 M = 0 M
15 1 13 14 ringrz M Ring C R C M 0 M = 0 M
16 12 15 syl M Domn V X C R C 0 M A R V C M 0 M = 0 M
17 16 adantr M Domn V X C R C 0 M A R V w V C M 0 M = 0 M
18 7 17 sylan9eqr M Domn V X C R C 0 M A R V w V A w = 0 M C M A w = 0 M
19 18 ex M Domn V X C R C 0 M A R V w V A w = 0 M C M A w = 0 M
20 19 necon3d M Domn V X C R C 0 M A R V w V C M A w 0 M A w 0 M
21 simpl1l M Domn V X C R C 0 M A R V w V M Domn
22 21 adantr M Domn V X C R C 0 M A R V w V A w 0 M M Domn
23 simpll2 M Domn V X C R C 0 M A R V w V A w 0 M C R C 0 M
24 ffvelrn A : V R w V A w R
25 24 ex A : V R w V A w R
26 2 25 syl A R V w V A w R
27 26 3ad2ant3 M Domn V X C R C 0 M A R V w V A w R
28 27 imp M Domn V X C R C 0 M A R V w V A w R
29 28 adantr M Domn V X C R C 0 M A R V w V A w 0 M A w R
30 simpr M Domn V X C R C 0 M A R V w V A w 0 M A w 0 M
31 1 13 14 domnmuln0 M Domn C R C 0 M A w R A w 0 M C M A w 0 M
32 22 23 29 30 31 syl112anc M Domn V X C R C 0 M A R V w V A w 0 M C M A w 0 M
33 32 ex M Domn V X C R C 0 M A R V w V A w 0 M C M A w 0 M
34 20 33 impbid M Domn V X C R C 0 M A R V w V C M A w 0 M A w 0 M
35 6 34 rabeqbidva M Domn V X C R C 0 M A R V w V | C M A w 0 M = w dom A | A w 0 M
36 fveq2 v = w A v = A w
37 36 oveq2d v = w C M A v = C M A w
38 37 cbvmptv v V C M A v = w V C M A w
39 simp1r M Domn V X C R C 0 M A R V V X
40 fvexd M Domn V X C R C 0 M A R V 0 M V
41 ovexd M Domn V X C R C 0 M A R V w V C M A w V
42 38 39 40 41 mptsuppd M Domn V X C R C 0 M A R V v V C M A v supp 0 M = w V | C M A w 0 M
43 elmapfun A R V Fun A
44 43 3ad2ant3 M Domn V X C R C 0 M A R V Fun A
45 simp3 M Domn V X C R C 0 M A R V A R V
46 suppval1 Fun A A R V 0 M V A supp 0 M = w dom A | A w 0 M
47 44 45 40 46 syl3anc M Domn V X C R C 0 M A R V A supp 0 M = w dom A | A w 0 M
48 35 42 47 3eqtr4d M Domn V X C R C 0 M A R V v V C M A v supp 0 M = A supp 0 M