Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmsuppss.r | |
|
Assertion | domnmsuppn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmsuppss.r | |
|
2 | elmapi | |
|
3 | fdm | |
|
4 | 3 | eqcomd | |
5 | 2 4 | syl | |
6 | 5 | 3ad2ant3 | |
7 | oveq2 | |
|
8 | domnring | |
|
9 | 8 | adantr | |
10 | simpl | |
|
11 | 9 10 | anim12i | |
12 | 11 | 3adant3 | |
13 | eqid | |
|
14 | eqid | |
|
15 | 1 13 14 | ringrz | |
16 | 12 15 | syl | |
17 | 16 | adantr | |
18 | 7 17 | sylan9eqr | |
19 | 18 | ex | |
20 | 19 | necon3d | |
21 | simpl1l | |
|
22 | 21 | adantr | |
23 | simpll2 | |
|
24 | ffvelcdm | |
|
25 | 24 | ex | |
26 | 2 25 | syl | |
27 | 26 | 3ad2ant3 | |
28 | 27 | imp | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 1 13 14 | domnmuln0 | |
32 | 22 23 29 30 31 | syl112anc | |
33 | 32 | ex | |
34 | 20 33 | impbid | |
35 | 6 34 | rabeqbidva | |
36 | fveq2 | |
|
37 | 36 | oveq2d | |
38 | 37 | cbvmptv | |
39 | simp1r | |
|
40 | fvexd | |
|
41 | ovexd | |
|
42 | 38 39 40 41 | mptsuppd | |
43 | elmapfun | |
|
44 | 43 | 3ad2ant3 | |
45 | simp3 | |
|
46 | suppval1 | |
|
47 | 44 45 40 46 | syl3anc | |
48 | 35 42 47 | 3eqtr4d | |