| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domnprodn0.1 |  | 
						
							| 2 |  | domnprodn0.2 |  | 
						
							| 3 |  | domnprodn0.3 |  | 
						
							| 4 |  | domnprodn0.4 |  | 
						
							| 5 |  | domnprodn0.5 |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 6 | neeq1d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 | 9 | neeq1d |  | 
						
							| 11 | 10 | imbi2d |  | 
						
							| 12 |  | oveq2 |  | 
						
							| 13 | 12 | neeq1d |  | 
						
							| 14 | 13 | imbi2d |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 15 | neeq1d |  | 
						
							| 17 | 16 | imbi2d |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 2 18 | ringidval |  | 
						
							| 20 | 19 | gsum0 |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 |  | domnnzr |  | 
						
							| 23 | 18 3 | nzrnz |  | 
						
							| 24 | 4 22 23 | 3syl |  | 
						
							| 25 | 21 24 | eqnetrd |  | 
						
							| 26 |  | domnring |  | 
						
							| 27 | 2 | ringmgp |  | 
						
							| 28 | 4 26 27 | 3syl |  | 
						
							| 29 | 28 | ad3antrrr |  | 
						
							| 30 |  | difssd |  | 
						
							| 31 |  | sswrd |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 32 | sselda |  | 
						
							| 34 | 33 | ad2antrr |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 | 35 | eldifad |  | 
						
							| 37 | 2 1 | mgpbas |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 2 38 | mgpplusg |  | 
						
							| 40 | 37 39 | gsumccatsn |  | 
						
							| 41 | 29 34 36 40 | syl3anc |  | 
						
							| 42 | 4 | ad3antrrr |  | 
						
							| 43 | 37 | gsumwcl |  | 
						
							| 44 | 29 34 43 | syl2anc |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 |  | eldifsni |  | 
						
							| 47 | 35 46 | syl |  | 
						
							| 48 | 1 38 3 | domnmuln0 |  | 
						
							| 49 | 42 44 45 36 47 48 | syl122anc |  | 
						
							| 50 | 41 49 | eqnetrd |  | 
						
							| 51 | 50 | ex |  | 
						
							| 52 | 51 | anasss |  | 
						
							| 53 | 52 | expcom |  | 
						
							| 54 | 53 | a2d |  | 
						
							| 55 | 8 11 14 17 25 54 | wrdind |  | 
						
							| 56 | 5 55 | mpcom |  |