Metamath Proof Explorer


Theorem dvdsflf1o

Description: A bijection from the numbers less than N / A to the multiples of A less than N . Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses dvdsflf1o.1 φA
dvdsflf1o.2 φN
dvdsflf1o.f F=n1ANNn
Assertion dvdsflf1o φF:1AN1-1 ontox1A|Nx

Proof

Step Hyp Ref Expression
1 dvdsflf1o.1 φA
2 dvdsflf1o.2 φN
3 dvdsflf1o.f F=n1ANNn
4 breq2 x=NnNxNNn
5 elfznn n1ANn
6 nnmulcl NnNn
7 2 5 6 syl2an φn1ANNn
8 1 2 nndivred φAN
9 fznnfl ANn1ANnnAN
10 8 9 syl φn1ANnnAN
11 10 simplbda φn1ANnAN
12 5 adantl φn1ANn
13 12 nnred φn1ANn
14 1 adantr φn1ANA
15 2 nnred φN
16 15 adantr φn1ANN
17 2 nngt0d φ0<N
18 17 adantr φn1AN0<N
19 lemuldiv2 nAN0<NNnAnAN
20 13 14 16 18 19 syl112anc φn1ANNnAnAN
21 11 20 mpbird φn1ANNnA
22 2 nnzd φN
23 elfzelz n1ANn
24 zmulcl NnNn
25 22 23 24 syl2an φn1ANNn
26 flge ANnNnANnA
27 14 25 26 syl2anc φn1ANNnANnA
28 21 27 mpbid φn1ANNnA
29 1 flcld φA
30 29 adantr φn1ANA
31 fznn ANn1ANnNnA
32 30 31 syl φn1ANNn1ANnNnA
33 7 28 32 mpbir2and φn1ANNn1A
34 dvdsmul1 NnNNn
35 22 23 34 syl2an φn1ANNNn
36 4 33 35 elrabd φn1ANNnx1A|Nx
37 breq2 x=mNxNm
38 37 elrab mx1A|Nxm1ANm
39 38 simprbi mx1A|NxNm
40 39 adantl φmx1A|NxNm
41 elrabi mx1A|Nxm1A
42 41 adantl φmx1A|Nxm1A
43 elfznn m1Am
44 42 43 syl φmx1A|Nxm
45 2 adantr φmx1A|NxN
46 nndivdvds mNNmmN
47 44 45 46 syl2anc φmx1A|NxNmmN
48 40 47 mpbid φmx1A|NxmN
49 fznnfl Am1AmmA
50 1 49 syl φm1AmmA
51 50 simplbda φm1AmA
52 41 51 sylan2 φmx1A|NxmA
53 44 nnred φmx1A|Nxm
54 1 adantr φmx1A|NxA
55 15 adantr φmx1A|NxN
56 17 adantr φmx1A|Nx0<N
57 lediv1 mAN0<NmAmNAN
58 53 54 55 56 57 syl112anc φmx1A|NxmAmNAN
59 52 58 mpbid φmx1A|NxmNAN
60 8 adantr φmx1A|NxAN
61 fznnfl ANmN1ANmNmNAN
62 60 61 syl φmx1A|NxmN1ANmNmNAN
63 48 59 62 mpbir2and φmx1A|NxmN1AN
64 44 nncnd φmx1A|Nxm
65 64 adantrl φn1ANmx1A|Nxm
66 2 nncnd φN
67 66 adantr φn1ANmx1A|NxN
68 12 nncnd φn1ANn
69 68 adantrr φn1ANmx1A|Nxn
70 2 nnne0d φN0
71 70 adantr φn1ANmx1A|NxN0
72 65 67 69 71 divmuld φn1ANmx1A|NxmN=nNn=m
73 eqcom n=mNmN=n
74 eqcom m=NnNn=m
75 72 73 74 3bitr4g φn1ANmx1A|Nxn=mNm=Nn
76 3 36 63 75 f1o2d φF:1AN1-1 ontox1A|Nx