Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvgt0.a | |
|
dvgt0.b | |
||
dvgt0.f | |
||
dvge0.d | |
||
dvge0.x | |
||
dvge0.y | |
||
dvge0.l | |
||
Assertion | dvge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvgt0.a | |
|
2 | dvgt0.b | |
|
3 | dvgt0.f | |
|
4 | dvge0.d | |
|
5 | dvge0.x | |
|
6 | dvge0.y | |
|
7 | dvge0.l | |
|
8 | 1 2 3 4 | dvgt0lem1 | |
9 | 8 | exp31 | |
10 | 5 6 9 | mp2and | |
11 | 10 | imp | |
12 | elrege0 | |
|
13 | 12 | simprbi | |
14 | 11 13 | syl | |
15 | cncff | |
|
16 | 3 15 | syl | |
17 | 16 6 | ffvelcdmd | |
18 | 16 5 | ffvelcdmd | |
19 | 17 18 | resubcld | |
20 | 19 | adantr | |
21 | iccssre | |
|
22 | 1 2 21 | syl2anc | |
23 | 22 6 | sseldd | |
24 | 22 5 | sseldd | |
25 | 23 24 | resubcld | |
26 | 25 | adantr | |
27 | 24 23 | posdifd | |
28 | 27 | biimpa | |
29 | ge0div | |
|
30 | 20 26 28 29 | syl3anc | |
31 | 14 30 | mpbird | |
32 | 31 | ex | |
33 | 17 18 | subge0d | |
34 | 32 33 | sylibd | |
35 | 17 | leidd | |
36 | fveq2 | |
|
37 | 36 | breq1d | |
38 | 35 37 | syl5ibrcom | |
39 | 24 23 | leloed | |
40 | 7 39 | mpbid | |
41 | 34 38 40 | mpjaod | |