Metamath Proof Explorer


Theorem dvge0

Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016)

Ref Expression
Hypotheses dvgt0.a φA
dvgt0.b φB
dvgt0.f φF:ABcn
dvge0.d φF:AB0+∞
dvge0.x φXAB
dvge0.y φYAB
dvge0.l φXY
Assertion dvge0 φFXFY

Proof

Step Hyp Ref Expression
1 dvgt0.a φA
2 dvgt0.b φB
3 dvgt0.f φF:ABcn
4 dvge0.d φF:AB0+∞
5 dvge0.x φXAB
6 dvge0.y φYAB
7 dvge0.l φXY
8 1 2 3 4 dvgt0lem1 φXABYABX<YFYFXYX0+∞
9 8 exp31 φXABYABX<YFYFXYX0+∞
10 5 6 9 mp2and φX<YFYFXYX0+∞
11 10 imp φX<YFYFXYX0+∞
12 elrege0 FYFXYX0+∞FYFXYX0FYFXYX
13 12 simprbi FYFXYX0+∞0FYFXYX
14 11 13 syl φX<Y0FYFXYX
15 cncff F:ABcnF:AB
16 3 15 syl φF:AB
17 16 6 ffvelcdmd φFY
18 16 5 ffvelcdmd φFX
19 17 18 resubcld φFYFX
20 19 adantr φX<YFYFX
21 iccssre ABAB
22 1 2 21 syl2anc φAB
23 22 6 sseldd φY
24 22 5 sseldd φX
25 23 24 resubcld φYX
26 25 adantr φX<YYX
27 24 23 posdifd φX<Y0<YX
28 27 biimpa φX<Y0<YX
29 ge0div FYFXYX0<YX0FYFX0FYFXYX
30 20 26 28 29 syl3anc φX<Y0FYFX0FYFXYX
31 14 30 mpbird φX<Y0FYFX
32 31 ex φX<Y0FYFX
33 17 18 subge0d φ0FYFXFXFY
34 32 33 sylibd φX<YFXFY
35 17 leidd φFYFY
36 fveq2 X=YFX=FY
37 36 breq1d X=YFXFYFYFY
38 35 37 syl5ibrcom φX=YFXFY
39 24 23 leloed φXYX<YX=Y
40 7 39 mpbid φX<YX=Y
41 34 38 40 mpjaod φFXFY