Metamath Proof Explorer


Theorem dvh0g

Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvh0g.b B=BaseK
dvh0g.h H=LHypK
dvh0g.t T=LTrnKW
dvh0g.u U=DVecHKW
dvh0g.z 0˙=0U
dvh0g.o O=fTIB
Assertion dvh0g KHLWH0˙=IBO

Proof

Step Hyp Ref Expression
1 dvh0g.b B=BaseK
2 dvh0g.h H=LHypK
3 dvh0g.t T=LTrnKW
4 dvh0g.u U=DVecHKW
5 dvh0g.z 0˙=0U
6 dvh0g.o O=fTIB
7 id KHLWHKHLWH
8 1 2 3 idltrn KHLWHIBT
9 eqid TEndoKW=TEndoKW
10 1 2 3 9 6 tendo0cl KHLWHOTEndoKW
11 eqid ScalarU=ScalarU
12 eqid +U=+U
13 eqid +ScalarU=+ScalarU
14 2 3 9 4 11 12 13 dvhopvadd KHLWHIBTOTEndoKWIBTOTEndoKWIBO+UIBO=IBIBO+ScalarUO
15 7 8 10 8 10 14 syl122anc KHLWHIBO+UIBO=IBIBO+ScalarUO
16 f1oi IB:B1-1 ontoB
17 f1of IB:B1-1 ontoBIB:BB
18 fcoi2 IB:BBIBIB=IB
19 16 17 18 mp2b IBIB=IB
20 19 a1i KHLWHIBIB=IB
21 eqid sTEndoKW,tTEndoKWfTsftf=sTEndoKW,tTEndoKWfTsftf
22 2 3 9 4 11 21 13 dvhfplusr KHLWH+ScalarU=sTEndoKW,tTEndoKWfTsftf
23 22 oveqd KHLWHO+ScalarUO=OsTEndoKW,tTEndoKWfTsftfO
24 1 2 3 9 6 21 tendo0pl KHLWHOTEndoKWOsTEndoKW,tTEndoKWfTsftfO=O
25 10 24 mpdan KHLWHOsTEndoKW,tTEndoKWfTsftfO=O
26 23 25 eqtrd KHLWHO+ScalarUO=O
27 20 26 opeq12d KHLWHIBIBO+ScalarUO=IBO
28 15 27 eqtrd KHLWHIBO+UIBO=IBO
29 2 4 7 dvhlmod KHLWHULMod
30 eqid BaseU=BaseU
31 2 3 9 4 30 dvhelvbasei KHLWHIBTOTEndoKWIBOBaseU
32 7 8 10 31 syl12anc KHLWHIBOBaseU
33 30 12 5 lmod0vid ULModIBOBaseUIBO+UIBO=IBO0˙=IBO
34 29 32 33 syl2anc KHLWHIBO+UIBO=IBO0˙=IBO
35 28 34 mpbid KHLWH0˙=IBO