Metamath Proof Explorer


Theorem dvh0g

Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvh0g.b B = Base K
dvh0g.h H = LHyp K
dvh0g.t T = LTrn K W
dvh0g.u U = DVecH K W
dvh0g.z 0 ˙ = 0 U
dvh0g.o O = f T I B
Assertion dvh0g K HL W H 0 ˙ = I B O

Proof

Step Hyp Ref Expression
1 dvh0g.b B = Base K
2 dvh0g.h H = LHyp K
3 dvh0g.t T = LTrn K W
4 dvh0g.u U = DVecH K W
5 dvh0g.z 0 ˙ = 0 U
6 dvh0g.o O = f T I B
7 id K HL W H K HL W H
8 1 2 3 idltrn K HL W H I B T
9 eqid TEndo K W = TEndo K W
10 1 2 3 9 6 tendo0cl K HL W H O TEndo K W
11 eqid Scalar U = Scalar U
12 eqid + U = + U
13 eqid + Scalar U = + Scalar U
14 2 3 9 4 11 12 13 dvhopvadd K HL W H I B T O TEndo K W I B T O TEndo K W I B O + U I B O = I B I B O + Scalar U O
15 7 8 10 8 10 14 syl122anc K HL W H I B O + U I B O = I B I B O + Scalar U O
16 f1oi I B : B 1-1 onto B
17 f1of I B : B 1-1 onto B I B : B B
18 fcoi2 I B : B B I B I B = I B
19 16 17 18 mp2b I B I B = I B
20 19 a1i K HL W H I B I B = I B
21 eqid s TEndo K W , t TEndo K W f T s f t f = s TEndo K W , t TEndo K W f T s f t f
22 2 3 9 4 11 21 13 dvhfplusr K HL W H + Scalar U = s TEndo K W , t TEndo K W f T s f t f
23 22 oveqd K HL W H O + Scalar U O = O s TEndo K W , t TEndo K W f T s f t f O
24 1 2 3 9 6 21 tendo0pl K HL W H O TEndo K W O s TEndo K W , t TEndo K W f T s f t f O = O
25 10 24 mpdan K HL W H O s TEndo K W , t TEndo K W f T s f t f O = O
26 23 25 eqtrd K HL W H O + Scalar U O = O
27 20 26 opeq12d K HL W H I B I B O + Scalar U O = I B O
28 15 27 eqtrd K HL W H I B O + U I B O = I B O
29 2 4 7 dvhlmod K HL W H U LMod
30 eqid Base U = Base U
31 2 3 9 4 30 dvhelvbasei K HL W H I B T O TEndo K W I B O Base U
32 7 8 10 31 syl12anc K HL W H I B O Base U
33 30 12 5 lmod0vid U LMod I B O Base U I B O + U I B O = I B O 0 ˙ = I B O
34 29 32 33 syl2anc K HL W H I B O + U I B O = I B O 0 ˙ = I B O
35 28 34 mpbid K HL W H 0 ˙ = I B O