Metamath Proof Explorer


Theorem dvnmptconst

Description: The N -th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmptconst.s φS
dvnmptconst.x φXTopOpenfld𝑡S
dvnmptconst.a φA
dvnmptconst.n φN
Assertion dvnmptconst φSDnxXAN=xX0

Proof

Step Hyp Ref Expression
1 dvnmptconst.s φS
2 dvnmptconst.x φXTopOpenfld𝑡S
3 dvnmptconst.a φA
4 dvnmptconst.n φN
5 id φφ
6 fveq2 n=1SDnxXAn=SDnxXA1
7 6 eqeq1d n=1SDnxXAn=xX0SDnxXA1=xX0
8 7 imbi2d n=1φSDnxXAn=xX0φSDnxXA1=xX0
9 fveq2 n=mSDnxXAn=SDnxXAm
10 9 eqeq1d n=mSDnxXAn=xX0SDnxXAm=xX0
11 10 imbi2d n=mφSDnxXAn=xX0φSDnxXAm=xX0
12 fveq2 n=m+1SDnxXAn=SDnxXAm+1
13 12 eqeq1d n=m+1SDnxXAn=xX0SDnxXAm+1=xX0
14 13 imbi2d n=m+1φSDnxXAn=xX0φSDnxXAm+1=xX0
15 fveq2 n=NSDnxXAn=SDnxXAN
16 15 eqeq1d n=NSDnxXAn=xX0SDnxXAN=xX0
17 16 imbi2d n=NφSDnxXAn=xX0φSDnxXAN=xX0
18 recnprss SS
19 1 18 syl φS
20 3 adantr φxXA
21 restsspw TopOpenfld𝑡S𝒫S
22 21 2 sselid φX𝒫S
23 elpwi X𝒫SXS
24 22 23 syl φXS
25 cnex V
26 25 a1i φV
27 20 24 26 1 mptelpm φxXA𝑝𝑚S
28 dvn1 SxXA𝑝𝑚SSDnxXA1=dxXAdSx
29 19 27 28 syl2anc φSDnxXA1=dxXAdSx
30 1 2 3 dvmptconst φdxXAdSx=xX0
31 29 30 eqtrd φSDnxXA1=xX0
32 simp3 mφSDnxXAm=xX0φφ
33 simp1 mφSDnxXAm=xX0φm
34 simpr φSDnxXAm=xX0φφ
35 simpl φSDnxXAm=xX0φφSDnxXAm=xX0
36 pm3.35 φφSDnxXAm=xX0SDnxXAm=xX0
37 34 35 36 syl2anc φSDnxXAm=xX0φSDnxXAm=xX0
38 37 3adant1 mφSDnxXAm=xX0φSDnxXAm=xX0
39 19 3ad2ant1 φmSDnxXAm=xX0S
40 27 3ad2ant1 φmSDnxXAm=xX0xXA𝑝𝑚S
41 nnnn0 mm0
42 41 3ad2ant2 φmSDnxXAm=xX0m0
43 dvnp1 SxXA𝑝𝑚Sm0SDnxXAm+1=SDSDnxXAm
44 39 40 42 43 syl3anc φmSDnxXAm=xX0SDnxXAm+1=SDSDnxXAm
45 oveq2 SDnxXAm=xX0SDSDnxXAm=dxX0dSx
46 45 3ad2ant3 φmSDnxXAm=xX0SDSDnxXAm=dxX0dSx
47 0cnd φ0
48 1 2 47 dvmptconst φdxX0dSx=xX0
49 48 3ad2ant1 φmSDnxXAm=xX0dxX0dSx=xX0
50 44 46 49 3eqtrd φmSDnxXAm=xX0SDnxXAm+1=xX0
51 32 33 38 50 syl3anc mφSDnxXAm=xX0φSDnxXAm+1=xX0
52 51 3exp mφSDnxXAm=xX0φSDnxXAm+1=xX0
53 8 11 14 17 31 52 nnind NφSDnxXAN=xX0
54 4 5 53 sylc φSDnxXAN=xX0