Description: The N -th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvnmptconst.s | |
|
dvnmptconst.x | |
||
dvnmptconst.a | |
||
dvnmptconst.n | |
||
Assertion | dvnmptconst | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvnmptconst.s | |
|
2 | dvnmptconst.x | |
|
3 | dvnmptconst.a | |
|
4 | dvnmptconst.n | |
|
5 | id | |
|
6 | fveq2 | |
|
7 | 6 | eqeq1d | |
8 | 7 | imbi2d | |
9 | fveq2 | |
|
10 | 9 | eqeq1d | |
11 | 10 | imbi2d | |
12 | fveq2 | |
|
13 | 12 | eqeq1d | |
14 | 13 | imbi2d | |
15 | fveq2 | |
|
16 | 15 | eqeq1d | |
17 | 16 | imbi2d | |
18 | recnprss | |
|
19 | 1 18 | syl | |
20 | 3 | adantr | |
21 | restsspw | |
|
22 | 21 2 | sselid | |
23 | elpwi | |
|
24 | 22 23 | syl | |
25 | cnex | |
|
26 | 25 | a1i | |
27 | 20 24 26 1 | mptelpm | |
28 | dvn1 | |
|
29 | 19 27 28 | syl2anc | |
30 | 1 2 3 | dvmptconst | |
31 | 29 30 | eqtrd | |
32 | simp3 | |
|
33 | simp1 | |
|
34 | simpr | |
|
35 | simpl | |
|
36 | pm3.35 | |
|
37 | 34 35 36 | syl2anc | |
38 | 37 | 3adant1 | |
39 | 19 | 3ad2ant1 | |
40 | 27 | 3ad2ant1 | |
41 | nnnn0 | |
|
42 | 41 | 3ad2ant2 | |
43 | dvnp1 | |
|
44 | 39 40 42 43 | syl3anc | |
45 | oveq2 | |
|
46 | 45 | 3ad2ant3 | |
47 | 0cnd | |
|
48 | 1 2 47 | dvmptconst | |
49 | 48 | 3ad2ant1 | |
50 | 44 46 49 | 3eqtrd | |
51 | 32 33 38 50 | syl3anc | |
52 | 51 | 3exp | |
53 | 8 11 14 17 31 52 | nnind | |
54 | 4 5 53 | sylc | |