| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvrcan5.b |  | 
						
							| 2 |  | dvrcan5.o |  | 
						
							| 3 |  | dvrcan5.d |  | 
						
							| 4 |  | dvrcan5.t |  | 
						
							| 5 | 1 2 | unitss |  | 
						
							| 6 |  | simpr3 |  | 
						
							| 7 | 5 6 | sselid |  | 
						
							| 8 | 2 4 | unitmulcl |  | 
						
							| 9 | 8 | 3adant3r1 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 4 2 10 3 | dvrval |  | 
						
							| 12 | 7 9 11 | syl2anc |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 2 14 | unitgrp |  | 
						
							| 16 | 13 15 | syl |  | 
						
							| 17 |  | simpr2 |  | 
						
							| 18 | 2 14 | unitgrpbas |  | 
						
							| 19 | 2 | fvexi |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 4 | mgpplusg |  | 
						
							| 22 | 14 21 | ressplusg |  | 
						
							| 23 | 19 22 | ax-mp |  | 
						
							| 24 | 2 14 10 | invrfval |  | 
						
							| 25 | 18 23 24 | grpinvadd |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 16 17 6 26 | syl3anc |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 2 10 4 28 | unitrinv |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 | 30 | 3ad2antr3 |  | 
						
							| 32 | 2 10 | unitinvcl |  | 
						
							| 33 | 32 | 3ad2antr3 |  | 
						
							| 34 | 5 33 | sselid |  | 
						
							| 35 | 2 10 | unitinvcl |  | 
						
							| 36 | 35 | 3ad2antr2 |  | 
						
							| 37 | 5 36 | sselid |  | 
						
							| 38 | 1 4 | ringass |  | 
						
							| 39 | 13 7 34 37 38 | syl13anc |  | 
						
							| 40 | 1 4 28 | ringlidm |  | 
						
							| 41 | 13 37 40 | syl2anc |  | 
						
							| 42 | 31 39 41 | 3eqtr3d |  | 
						
							| 43 | 12 27 42 | 3eqtrd |  | 
						
							| 44 | 43 | oveq2d |  | 
						
							| 45 |  | simpr1 |  | 
						
							| 46 | 1 2 3 4 | dvrass |  | 
						
							| 47 | 13 45 7 9 46 | syl13anc |  | 
						
							| 48 | 1 4 2 10 3 | dvrval |  | 
						
							| 49 | 45 17 48 | syl2anc |  | 
						
							| 50 | 44 47 49 | 3eqtr4d |  |