Metamath Proof Explorer


Theorem dvrcan5

Description: Cancellation law for common factor in ratio. ( divcan5 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016)

Ref Expression
Hypotheses dvrcan5.b B=BaseR
dvrcan5.o U=UnitR
dvrcan5.d ×˙=/rR
dvrcan5.t ·˙=R
Assertion dvrcan5 RRingXBYUZUX·˙Z×˙Y·˙Z=X×˙Y

Proof

Step Hyp Ref Expression
1 dvrcan5.b B=BaseR
2 dvrcan5.o U=UnitR
3 dvrcan5.d ×˙=/rR
4 dvrcan5.t ·˙=R
5 1 2 unitss UB
6 simpr3 RRingXBYUZUZU
7 5 6 sselid RRingXBYUZUZB
8 2 4 unitmulcl RRingYUZUY·˙ZU
9 8 3adant3r1 RRingXBYUZUY·˙ZU
10 eqid invrR=invrR
11 1 4 2 10 3 dvrval ZBY·˙ZUZ×˙Y·˙Z=Z·˙invrRY·˙Z
12 7 9 11 syl2anc RRingXBYUZUZ×˙Y·˙Z=Z·˙invrRY·˙Z
13 simpl RRingXBYUZURRing
14 eqid mulGrpR𝑠U=mulGrpR𝑠U
15 2 14 unitgrp RRingmulGrpR𝑠UGrp
16 13 15 syl RRingXBYUZUmulGrpR𝑠UGrp
17 simpr2 RRingXBYUZUYU
18 2 14 unitgrpbas U=BasemulGrpR𝑠U
19 2 fvexi UV
20 eqid mulGrpR=mulGrpR
21 20 4 mgpplusg ·˙=+mulGrpR
22 14 21 ressplusg UV·˙=+mulGrpR𝑠U
23 19 22 ax-mp ·˙=+mulGrpR𝑠U
24 2 14 10 invrfval invrR=invgmulGrpR𝑠U
25 18 23 24 grpinvadd mulGrpR𝑠UGrpYUZUinvrRY·˙Z=invrRZ·˙invrRY
26 25 oveq2d mulGrpR𝑠UGrpYUZUZ·˙invrRY·˙Z=Z·˙invrRZ·˙invrRY
27 16 17 6 26 syl3anc RRingXBYUZUZ·˙invrRY·˙Z=Z·˙invrRZ·˙invrRY
28 eqid 1R=1R
29 2 10 4 28 unitrinv RRingZUZ·˙invrRZ=1R
30 29 oveq1d RRingZUZ·˙invrRZ·˙invrRY=1R·˙invrRY
31 30 3ad2antr3 RRingXBYUZUZ·˙invrRZ·˙invrRY=1R·˙invrRY
32 2 10 unitinvcl RRingZUinvrRZU
33 32 3ad2antr3 RRingXBYUZUinvrRZU
34 5 33 sselid RRingXBYUZUinvrRZB
35 2 10 unitinvcl RRingYUinvrRYU
36 35 3ad2antr2 RRingXBYUZUinvrRYU
37 5 36 sselid RRingXBYUZUinvrRYB
38 1 4 ringass RRingZBinvrRZBinvrRYBZ·˙invrRZ·˙invrRY=Z·˙invrRZ·˙invrRY
39 13 7 34 37 38 syl13anc RRingXBYUZUZ·˙invrRZ·˙invrRY=Z·˙invrRZ·˙invrRY
40 1 4 28 ringlidm RRinginvrRYB1R·˙invrRY=invrRY
41 13 37 40 syl2anc RRingXBYUZU1R·˙invrRY=invrRY
42 31 39 41 3eqtr3d RRingXBYUZUZ·˙invrRZ·˙invrRY=invrRY
43 12 27 42 3eqtrd RRingXBYUZUZ×˙Y·˙Z=invrRY
44 43 oveq2d RRingXBYUZUX·˙Z×˙Y·˙Z=X·˙invrRY
45 simpr1 RRingXBYUZUXB
46 1 2 3 4 dvrass RRingXBZBY·˙ZUX·˙Z×˙Y·˙Z=X·˙Z×˙Y·˙Z
47 13 45 7 9 46 syl13anc RRingXBYUZUX·˙Z×˙Y·˙Z=X·˙Z×˙Y·˙Z
48 1 4 2 10 3 dvrval XBYUX×˙Y=X·˙invrRY
49 45 17 48 syl2anc RRingXBYUZUX×˙Y=X·˙invrRY
50 44 47 49 3eqtr4d RRingXBYUZUX·˙Z×˙Y·˙Z=X×˙Y