Metamath Proof Explorer


Theorem efeq1

Description: A complex number whose exponential is one is an integer multiple of 2pi i . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efeq1 AeA=1Ai2π

Proof

Step Hyp Ref Expression
1 halfcl AA2
2 ax-icn i
3 ine0 i0
4 divcl A2ii0A2i
5 2 3 4 mp3an23 A2A2i
6 1 5 syl AA2i
7 sineq0 A2isinA2i=0A2iπ
8 6 7 syl AsinA2i=0A2iπ
9 sinval A2isinA2i=eiA2ieiA2i2i
10 6 9 syl AsinA2i=eiA2ieiA2i2i
11 divcan2 A2ii0iA2i=A2
12 2 3 11 mp3an23 A2iA2i=A2
13 1 12 syl AiA2i=A2
14 13 fveq2d AeiA2i=eA2
15 mulneg1 iA2iiA2i=iA2i
16 2 6 15 sylancr AiA2i=iA2i
17 13 negeqd AiA2i=A2
18 16 17 eqtrd AiA2i=A2
19 18 fveq2d AeiA2i=eA2
20 14 19 oveq12d AeiA2ieiA2i=eA2eA2
21 20 oveq1d AeiA2ieiA2i2i=eA2eA22i
22 10 21 eqtrd AsinA2i=eA2eA22i
23 22 eqeq1d AsinA2i=0eA2eA22i=0
24 efcl A2eA2
25 1 24 syl AeA2
26 1 negcld AA2
27 efcl A2eA2
28 26 27 syl AeA2
29 25 28 subcld AeA2eA2
30 2cn 2
31 30 2 mulcli 2i
32 2ne0 20
33 30 2 32 3 mulne0i 2i0
34 diveq0 eA2eA22i2i0eA2eA22i=0eA2eA2=0
35 31 33 34 mp3an23 eA2eA2eA2eA22i=0eA2eA2=0
36 29 35 syl AeA2eA22i=0eA2eA2=0
37 efne0 A2eA20
38 26 37 syl AeA20
39 25 28 28 38 divsubdird AeA2eA2eA2=eA2eA2eA2eA2
40 efsub A2A2eA2A2=eA2eA2
41 1 26 40 syl2anc AeA2A2=eA2eA2
42 1 1 subnegd AA2A2=A2+A2
43 2halves AA2+A2=A
44 42 43 eqtrd AA2A2=A
45 44 fveq2d AeA2A2=eA
46 41 45 eqtr3d AeA2eA2=eA
47 28 38 dividd AeA2eA2=1
48 46 47 oveq12d AeA2eA2eA2eA2=eA1
49 39 48 eqtrd AeA2eA2eA2=eA1
50 49 eqeq1d AeA2eA2eA2=0eA1=0
51 29 28 38 diveq0ad AeA2eA2eA2=0eA2eA2=0
52 efcl AeA
53 ax-1cn 1
54 subeq0 eA1eA1=0eA=1
55 52 53 54 sylancl AeA1=0eA=1
56 50 51 55 3bitr3d AeA2eA2=0eA=1
57 23 36 56 3bitrd AsinA2i=0eA=1
58 2cnne0 220
59 2 3 pm3.2i ii0
60 divdiv32 A220ii0A2i=Ai2
61 58 59 60 mp3an23 AA2i=Ai2
62 61 oveq1d AA2iπ=Ai2π
63 divcl Aii0Ai
64 2 3 63 mp3an23 AAi
65 picn π
66 pire π
67 pipos 0<π
68 66 67 gt0ne0ii π0
69 65 68 pm3.2i ππ0
70 divdiv1 Ai220ππ0Ai2π=Ai2π
71 58 69 70 mp3an23 AiAi2π=Ai2π
72 64 71 syl AAi2π=Ai2π
73 30 65 mulcli 2π
74 30 65 32 68 mulne0i 2π0
75 73 74 pm3.2i 2π2π0
76 divdiv1 Aii02π2π0Ai2π=Ai2π
77 59 75 76 mp3an23 AAi2π=Ai2π
78 72 77 eqtrd AAi2π=Ai2π
79 62 78 eqtrd AA2iπ=Ai2π
80 79 eleq1d AA2iπAi2π
81 8 57 80 3bitr3d AeA=1Ai2π