Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efgval.w | |
|
efgval.r | |
||
efgval2.m | |
||
efgval2.t | |
||
Assertion | efginvrel1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | |
|
2 | efgval.r | |
|
3 | efgval2.m | |
|
4 | efgval2.t | |
|
5 | fviss | |
|
6 | 1 5 | eqsstri | |
7 | 6 | sseli | |
8 | revcl | |
|
9 | 7 8 | syl | |
10 | 3 | efgmf | |
11 | revco | |
|
12 | 9 10 11 | sylancl | |
13 | revrev | |
|
14 | 7 13 | syl | |
15 | 14 | coeq2d | |
16 | 12 15 | eqtr3d | |
17 | 16 | coeq2d | |
18 | wrdf | |
|
19 | 7 18 | syl | |
20 | 19 | ffvelcdmda | |
21 | 3 | efgmnvl | |
22 | 20 21 | syl | |
23 | 22 | mpteq2dva | |
24 | 10 | ffvelcdmi | |
25 | 20 24 | syl | |
26 | fcompt | |
|
27 | 10 19 26 | sylancr | |
28 | 10 | a1i | |
29 | 28 | feqmptd | |
30 | fveq2 | |
|
31 | 25 27 29 30 | fmptco | |
32 | 19 | feqmptd | |
33 | 23 31 32 | 3eqtr4d | |
34 | 17 33 | eqtrd | |
35 | 34 | oveq2d | |
36 | wrdco | |
|
37 | 9 10 36 | sylancl | |
38 | 1 | efgrcl | |
39 | 38 | simprd | |
40 | 37 39 | eleqtrrd | |
41 | 1 2 3 4 | efginvrel2 | |
42 | 40 41 | syl | |
43 | 35 42 | eqbrtrrd | |