Metamath Proof Explorer


Theorem efginvrel1

Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efginvrel1 AWMreverseA++A˙

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 fviss IWordI×2𝑜WordI×2𝑜
6 1 5 eqsstri WWordI×2𝑜
7 6 sseli AWAWordI×2𝑜
8 revcl AWordI×2𝑜reverseAWordI×2𝑜
9 7 8 syl AWreverseAWordI×2𝑜
10 3 efgmf M:I×2𝑜I×2𝑜
11 revco reverseAWordI×2𝑜M:I×2𝑜I×2𝑜MreversereverseA=reverseMreverseA
12 9 10 11 sylancl AWMreversereverseA=reverseMreverseA
13 revrev AWordI×2𝑜reversereverseA=A
14 7 13 syl AWreversereverseA=A
15 14 coeq2d AWMreversereverseA=MA
16 12 15 eqtr3d AWreverseMreverseA=MA
17 16 coeq2d AWMreverseMreverseA=MMA
18 wrdf AWordI×2𝑜A:0..^AI×2𝑜
19 7 18 syl AWA:0..^AI×2𝑜
20 19 ffvelcdmda AWc0..^AAcI×2𝑜
21 3 efgmnvl AcI×2𝑜MMAc=Ac
22 20 21 syl AWc0..^AMMAc=Ac
23 22 mpteq2dva AWc0..^AMMAc=c0..^AAc
24 10 ffvelcdmi AcI×2𝑜MAcI×2𝑜
25 20 24 syl AWc0..^AMAcI×2𝑜
26 fcompt M:I×2𝑜I×2𝑜A:0..^AI×2𝑜MA=c0..^AMAc
27 10 19 26 sylancr AWMA=c0..^AMAc
28 10 a1i AWM:I×2𝑜I×2𝑜
29 28 feqmptd AWM=aI×2𝑜Ma
30 fveq2 a=MAcMa=MMAc
31 25 27 29 30 fmptco AWMMA=c0..^AMMAc
32 19 feqmptd AWA=c0..^AAc
33 23 31 32 3eqtr4d AWMMA=A
34 17 33 eqtrd AWMreverseMreverseA=A
35 34 oveq2d AWMreverseA++MreverseMreverseA=MreverseA++A
36 wrdco reverseAWordI×2𝑜M:I×2𝑜I×2𝑜MreverseAWordI×2𝑜
37 9 10 36 sylancl AWMreverseAWordI×2𝑜
38 1 efgrcl AWIVW=WordI×2𝑜
39 38 simprd AWW=WordI×2𝑜
40 37 39 eleqtrrd AWMreverseAW
41 1 2 3 4 efginvrel2 MreverseAWMreverseA++MreverseMreverseA˙
42 40 41 syl AWMreverseA++MreverseMreverseA˙
43 35 42 eqbrtrrd AWMreverseA++A˙