Description: Lemma for efif1o . (Contributed by Mario Carneiro, 8-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efif1o.1 | |
|
efif1o.2 | |
||
Assertion | efif1olem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efif1o.1 | |
|
2 | efif1o.2 | |
|
3 | simpr | |
|
4 | 3 2 | eleqtrdi | |
5 | absf | |
|
6 | ffn | |
|
7 | fniniseg | |
|
8 | 5 6 7 | mp2b | |
9 | 4 8 | sylib | |
10 | 9 | simpld | |
11 | 10 | sqrtcld | |
12 | 11 | imcld | |
13 | absimle | |
|
14 | 11 13 | syl | |
15 | 10 | sqsqrtd | |
16 | 15 | fveq2d | |
17 | 2nn0 | |
|
18 | absexp | |
|
19 | 11 17 18 | sylancl | |
20 | 9 | simprd | |
21 | 16 19 20 | 3eqtr3d | |
22 | sq1 | |
|
23 | 21 22 | eqtr4di | |
24 | 11 | abscld | |
25 | 11 | absge0d | |
26 | 1re | |
|
27 | 0le1 | |
|
28 | sq11 | |
|
29 | 26 27 28 | mpanr12 | |
30 | 24 25 29 | syl2anc | |
31 | 23 30 | mpbid | |
32 | 14 31 | breqtrd | |
33 | absle | |
|
34 | 12 26 33 | sylancl | |
35 | 32 34 | mpbid | |
36 | 35 | simpld | |
37 | 35 | simprd | |
38 | neg1rr | |
|
39 | 38 26 | elicc2i | |
40 | 12 36 37 39 | syl3anbrc | |