Metamath Proof Explorer


Theorem efopnlem1

Description: Lemma for efopn . (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion efopnlem1 R+R<πA0ballabsRA<π

Proof

Step Hyp Ref Expression
1 simpr R+R<πA0ballabsRA0ballabsR
2 rpxr R+R*
3 2 ad2antrr R+R<πA0ballabsRR*
4 eqid abs=abs
5 4 cnbl0 R*abs-10R=0ballabsR
6 3 5 syl R+R<πA0ballabsRabs-10R=0ballabsR
7 1 6 eleqtrrd R+R<πA0ballabsRAabs-10R
8 absf abs:
9 ffn abs:absFn
10 elpreima absFnAabs-10RAA0R
11 8 9 10 mp2b Aabs-10RAA0R
12 11 simplbi Aabs-10RA
13 7 12 syl R+R<πA0ballabsRA
14 13 imcld R+R<πA0ballabsRA
15 14 recnd R+R<πA0ballabsRA
16 15 abscld R+R<πA0ballabsRA
17 rpre R+R
18 17 ad2antrr R+R<πA0ballabsRR
19 pire π
20 19 a1i R+R<πA0ballabsRπ
21 13 abscld R+R<πA0ballabsRA
22 absimle AAA
23 13 22 syl R+R<πA0ballabsRAA
24 11 simprbi Aabs-10RA0R
25 7 24 syl R+R<πA0ballabsRA0R
26 0re 0
27 elico2 0R*A0RA0AA<R
28 26 3 27 sylancr R+R<πA0ballabsRA0RA0AA<R
29 25 28 mpbid R+R<πA0ballabsRA0AA<R
30 29 simp3d R+R<πA0ballabsRA<R
31 16 21 18 23 30 lelttrd R+R<πA0ballabsRA<R
32 simplr R+R<πA0ballabsRR<π
33 16 18 20 31 32 lttrd R+R<πA0ballabsRA<π