| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 |  | rpxr |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | cnbl0 |  | 
						
							| 6 | 3 5 | syl |  | 
						
							| 7 | 1 6 | eleqtrrd |  | 
						
							| 8 |  | absf |  | 
						
							| 9 |  | ffn |  | 
						
							| 10 |  | elpreima |  | 
						
							| 11 | 8 9 10 | mp2b |  | 
						
							| 12 | 11 | simplbi |  | 
						
							| 13 | 7 12 | syl |  | 
						
							| 14 | 13 | imcld |  | 
						
							| 15 | 14 | recnd |  | 
						
							| 16 | 15 | abscld |  | 
						
							| 17 |  | rpre |  | 
						
							| 18 | 17 | ad2antrr |  | 
						
							| 19 |  | pire |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 13 | abscld |  | 
						
							| 22 |  | absimle |  | 
						
							| 23 | 13 22 | syl |  | 
						
							| 24 | 11 | simprbi |  | 
						
							| 25 | 7 24 | syl |  | 
						
							| 26 |  | 0re |  | 
						
							| 27 |  | elico2 |  | 
						
							| 28 | 26 3 27 | sylancr |  | 
						
							| 29 | 25 28 | mpbid |  | 
						
							| 30 | 29 | simp3d |  | 
						
							| 31 | 16 21 18 23 30 | lelttrd |  | 
						
							| 32 |  | simplr |  | 
						
							| 33 | 16 18 20 31 32 | lttrd |  |