Metamath Proof Explorer


Theorem elfzelfzlble

Description: Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018)

Ref Expression
Assertion elfzelfzlble MK0NN<M+KKNMN

Proof

Step Hyp Ref Expression
1 elfz2 K0N0NK0KKN
2 3simpc 0NKNK
3 2 adantr 0NK0KKNNK
4 1 3 sylbi K0NNK
5 4 anim2i MK0NMNK
6 simpl NKN
7 6 anim2i MNKMN
8 7 ancomd MNKNM
9 zsubcl NMNM
10 8 9 syl MNKNM
11 6 adantl MNKN
12 simprr MNKK
13 10 11 12 3jca MNKNMNK
14 5 13 syl MK0NNMNK
15 14 3adant3 MK0NN<M+KNMNK
16 elfzel2 K0NN
17 16 zred K0NN
18 17 adantl MK0NN
19 zre MM
20 19 adantr MK0NM
21 elfzelz K0NK
22 21 zred K0NK
23 22 adantl MK0NK
24 18 20 23 3jca MK0NNMK
25 simp1 NMKN
26 readdcl MKM+K
27 26 3adant1 NMKM+K
28 ltle NM+KN<M+KNM+K
29 25 27 28 syl2anc NMKN<M+KNM+K
30 lesubadd2 NMKNMKNM+K
31 29 30 sylibrd NMKN<M+KNMK
32 24 31 syl MK0NN<M+KNMK
33 32 3impia MK0NN<M+KNMK
34 elfzle2 K0NKN
35 34 3ad2ant2 MK0NN<M+KKN
36 15 33 35 jca32 MK0NN<M+KNMNKNMKKN
37 elfz2 KNMNNMNKNMKKN
38 36 37 sylibr MK0NN<M+KKNMN