Metamath Proof Explorer


Theorem elfzmlbp

Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018)

Ref Expression
Assertion elfzmlbp NKMM+NKM0N

Proof

Step Hyp Ref Expression
1 elfz2 KMM+NMM+NKMKKM+N
2 znn0sub MKMKKM0
3 2 adantr MKNMKKM0
4 3 biimpcd MKMKNKM0
5 4 adantr MKKM+NMKNKM0
6 5 impcom MKNMKKM+NKM0
7 zre MM
8 7 adantr MKM
9 8 adantr MKNM
10 zre KK
11 10 adantl MKK
12 11 adantr MKNK
13 zaddcl MNM+N
14 13 adantlr MKNM+N
15 14 zred MKNM+N
16 letr MKM+NMKKM+NMM+N
17 9 12 15 16 syl3anc MKNMKKM+NMM+N
18 zre NN
19 addge01 MN0NMM+N
20 8 18 19 syl2an MKN0NMM+N
21 elnn0z N0N0N
22 21 simplbi2 N0NN0
23 22 adantl MKN0NN0
24 20 23 sylbird MKNMM+NN0
25 17 24 syld MKNMKKM+NN0
26 25 imp MKNMKKM+NN0
27 df-3an MKNMKN
28 3ancoma MKNKMN
29 27 28 bitr3i MKNKMN
30 10 7 18 3anim123i KMNKMN
31 29 30 sylbi MKNKMN
32 lesubadd2 KMNKMNKM+N
33 31 32 syl MKNKMNKM+N
34 33 biimprcd KM+NMKNKMN
35 34 adantl MKKM+NMKNKMN
36 35 impcom MKNMKKM+NKMN
37 6 26 36 3jca MKNMKKM+NKM0N0KMN
38 37 exp31 MKNMKKM+NKM0N0KMN
39 38 com23 MKMKKM+NNKM0N0KMN
40 39 3adant2 MM+NKMKKM+NNKM0N0KMN
41 40 imp MM+NKMKKM+NNKM0N0KMN
42 41 com12 NMM+NKMKKM+NKM0N0KMN
43 1 42 biimtrid NKMM+NKM0N0KMN
44 43 imp NKMM+NKM0N0KMN
45 elfz2nn0 KM0NKM0N0KMN
46 44 45 sylibr NKMM+NKM0N