Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqg0subg.0 | |
|
eqg0subg.s | |
||
eqg0subg.b | |
||
eqg0subg.r | |
||
Assertion | eqg0subg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqg0subg.0 | |
|
2 | eqg0subg.s | |
|
3 | eqg0subg.b | |
|
4 | eqg0subg.r | |
|
5 | 1 | 0subg | |
6 | 3 | subgss | |
7 | 5 6 | syl | |
8 | 2 7 | eqsstrid | |
9 | eqid | |
|
10 | eqid | |
|
11 | 3 9 10 4 | eqgfval | |
12 | 8 11 | mpdan | |
13 | opabresid | |
|
14 | simpl | |
|
15 | eleq1w | |
|
16 | 15 | equcoms | |
17 | 16 | biimpac | |
18 | simpr | |
|
19 | 14 17 18 | jca31 | |
20 | simpl | |
|
21 | 20 | anim1i | |
22 | 21 | a1i | |
23 | 19 22 | impbid2 | |
24 | simpl | |
|
25 | simpr | |
|
26 | 25 | adantl | |
27 | 20 | adantl | |
28 | 3 9 24 26 27 | grpinv11 | |
29 | 3 9 | grpinvcl | |
30 | 29 | adantrr | |
31 | 3 10 1 9 | grpinvid2 | |
32 | 24 26 30 31 | syl3anc | |
33 | 28 32 | bitr3d | |
34 | 33 | pm5.32da | |
35 | vex | |
|
36 | vex | |
|
37 | 35 36 | prss | |
38 | 37 | a1i | |
39 | 2 | eleq2i | |
40 | ovex | |
|
41 | 40 | elsn | |
42 | 39 41 | bitr2i | |
43 | 42 | a1i | |
44 | 38 43 | anbi12d | |
45 | 23 34 44 | 3bitrd | |
46 | 45 | opabbidv | |
47 | 13 46 | eqtr2id | |
48 | 12 47 | eqtrd | |