Metamath Proof Explorer


Theorem eqg0subg

Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses eqg0subg.0 0˙=0G
eqg0subg.s S=0˙
eqg0subg.b B=BaseG
eqg0subg.r R=G~QGS
Assertion eqg0subg GGrpR=IB

Proof

Step Hyp Ref Expression
1 eqg0subg.0 0˙=0G
2 eqg0subg.s S=0˙
3 eqg0subg.b B=BaseG
4 eqg0subg.r R=G~QGS
5 1 0subg GGrp0˙SubGrpG
6 3 subgss 0˙SubGrpG0˙B
7 5 6 syl GGrp0˙B
8 2 7 eqsstrid GGrpSB
9 eqid invgG=invgG
10 eqid +G=+G
11 3 9 10 4 eqgfval GGrpSBR=xy|xyBinvgGx+GyS
12 8 11 mpdan GGrpR=xy|xyBinvgGx+GyS
13 opabresid IB=xy|xBy=x
14 simpl xBy=xxB
15 eleq1w x=yxByB
16 15 equcoms y=xxByB
17 16 biimpac xBy=xyB
18 simpr xBy=xy=x
19 14 17 18 jca31 xBy=xxByBy=x
20 simpl xByBxB
21 20 anim1i xByBy=xxBy=x
22 21 a1i GGrpxByBy=xxBy=x
23 19 22 impbid2 GGrpxBy=xxByBy=x
24 simpl GGrpxByBGGrp
25 simpr xByByB
26 25 adantl GGrpxByByB
27 20 adantl GGrpxByBxB
28 3 9 24 26 27 grpinv11 GGrpxByBinvgGy=invgGxy=x
29 3 9 grpinvcl GGrpxBinvgGxB
30 29 adantrr GGrpxByBinvgGxB
31 3 10 1 9 grpinvid2 GGrpyBinvgGxBinvgGy=invgGxinvgGx+Gy=0˙
32 24 26 30 31 syl3anc GGrpxByBinvgGy=invgGxinvgGx+Gy=0˙
33 28 32 bitr3d GGrpxByBy=xinvgGx+Gy=0˙
34 33 pm5.32da GGrpxByBy=xxByBinvgGx+Gy=0˙
35 vex xV
36 vex yV
37 35 36 prss xByBxyB
38 37 a1i GGrpxByBxyB
39 2 eleq2i invgGx+GySinvgGx+Gy0˙
40 ovex invgGx+GyV
41 40 elsn invgGx+Gy0˙invgGx+Gy=0˙
42 39 41 bitr2i invgGx+Gy=0˙invgGx+GyS
43 42 a1i GGrpinvgGx+Gy=0˙invgGx+GyS
44 38 43 anbi12d GGrpxByBinvgGx+Gy=0˙xyBinvgGx+GyS
45 23 34 44 3bitrd GGrpxBy=xxyBinvgGx+GyS
46 45 opabbidv GGrpxy|xBy=x=xy|xyBinvgGx+GyS
47 13 46 eqtr2id GGrpxy|xyBinvgGx+GyS=IB
48 12 47 eqtrd GGrpR=IB