Metamath Proof Explorer


Theorem esplympl

Description: Elementary symmetric polynomials are polynomials. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d D = h 0 I | finSupp 0 h
esplympl.i φ I Fin
esplympl.r φ R Ring
esplympl.k φ K 0
esplympl.1 M = Base I mPoly R
Assertion esplympl Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. M ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplympl.d D = h 0 I | finSupp 0 h
2 esplympl.i φ I Fin
3 esplympl.r φ R Ring
4 esplympl.k φ K 0
5 esplympl.1 M = Base I mPoly R
6 fvexd φ Base R V
7 ovex 0 I V
8 1 7 rabex2 D V
9 8 a1i φ D V
10 1 2 3 4 esplyfval Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
11 10 eqcomd Could not format ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) = ( ( I eSymPoly R ) ` K ) ) : No typesetting found for |- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) = ( ( I eSymPoly R ) ` K ) ) with typecode |-
12 eqid ℤRHom R = ℤRHom R
13 12 zrhrhm R Ring ℤRHom R ring RingHom R
14 zringbas = Base ring
15 eqid Base R = Base R
16 14 15 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
17 3 13 16 3syl φ ℤRHom R : Base R
18 1 2 3 4 esplylem φ 𝟙 I c 𝒫 I | c = K D
19 indf D V 𝟙 I c 𝒫 I | c = K D 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
20 9 18 19 syl2anc φ 𝟙 D 𝟙 I c 𝒫 I | c = K : D 0 1
21 0zd φ 0
22 1zzd φ 1
23 21 22 prssd φ 0 1
24 20 23 fssd φ 𝟙 D 𝟙 I c 𝒫 I | c = K : D
25 17 24 fcod φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K : D Base R
26 11 25 feq1dd Could not format ( ph -> ( ( I eSymPoly R ) ` K ) : D --> ( Base ` R ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) : D --> ( Base ` R ) ) with typecode |-
27 6 9 26 elmapdd Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( ( Base ` R ) ^m D ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( ( Base ` R ) ^m D ) ) with typecode |-
28 eqid I mPwSer R = I mPwSer R
29 1 psrbasfsupp D = h 0 I | h -1 Fin
30 eqid Base I mPwSer R = Base I mPwSer R
31 28 15 29 30 2 psrbas φ Base I mPwSer R = Base R D
32 27 31 eleqtrrd Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) ) with typecode |-
33 fvexd φ 0 R V
34 zex V
35 34 a1i φ V
36 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
37 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
38 2 36 37 3syl φ 𝟙 I : 𝒫 I 0 1 I
39 38 ffund φ Fun 𝟙 I
40 2 pwexd φ 𝒫 I V
41 ssrab2 c 𝒫 I | c = K 𝒫 I
42 41 a1i φ c 𝒫 I | c = K 𝒫 I
43 40 42 ssexd φ c 𝒫 I | c = K V
44 hashcl I Fin I 0
45 2 44 syl φ I 0
46 4 nn0zd φ K
47 bccl I 0 K ( I K) 0
48 45 46 47 syl2anc φ ( I K) 0
49 hashbc I Fin K ( I K) = c 𝒫 I | c = K
50 2 46 49 syl2anc φ ( I K) = c 𝒫 I | c = K
51 50 eqcomd φ c 𝒫 I | c = K = ( I K)
52 hashvnfin c 𝒫 I | c = K V ( I K) 0 c 𝒫 I | c = K = ( I K) c 𝒫 I | c = K Fin
53 52 imp c 𝒫 I | c = K V ( I K) 0 c 𝒫 I | c = K = ( I K) c 𝒫 I | c = K Fin
54 43 48 51 53 syl21anc φ c 𝒫 I | c = K Fin
55 imafi Fun 𝟙 I c 𝒫 I | c = K Fin 𝟙 I c 𝒫 I | c = K Fin
56 39 54 55 syl2anc φ 𝟙 I c 𝒫 I | c = K Fin
57 9 18 56 indfsd φ finSupp 0 𝟙 D 𝟙 I c 𝒫 I | c = K
58 eqid 0 R = 0 R
59 12 58 zrh0 R Ring ℤRHom R 0 = 0 R
60 3 59 syl φ ℤRHom R 0 = 0 R
61 33 21 20 17 23 9 35 57 60 fsuppcor φ finSupp 0 R ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K
62 10 61 eqbrtrd Could not format ( ph -> ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) with typecode |-
63 eqid I mPoly R = I mPoly R
64 63 28 30 58 5 mplelbas Could not format ( ( ( I eSymPoly R ) ` K ) e. M <-> ( ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) /\ ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) ) : No typesetting found for |- ( ( ( I eSymPoly R ) ` K ) e. M <-> ( ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) /\ ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) ) with typecode |-
65 32 62 64 sylanbrc Could not format ( ph -> ( ( I eSymPoly R ) ` K ) e. M ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) e. M ) with typecode |-