Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumc.0 | |
|
esumc.1 | |
||
esumc.2 | |
||
esumc.3 | |
||
esumc.4 | |
||
esumc.5 | |
||
esumc.6 | |
||
esumc.7 | |
||
Assertion | esumc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumc.0 | |
|
2 | esumc.1 | |
|
3 | esumc.2 | |
|
4 | esumc.3 | |
|
5 | esumc.4 | |
|
6 | esumc.5 | |
|
7 | esumc.6 | |
|
8 | esumc.7 | |
|
9 | nfcv | |
|
10 | nfre1 | |
|
11 | 10 | nfab | |
12 | nfmpt1 | |
|
13 | elex | |
|
14 | 5 13 | syl | |
15 | 3 14 | abrexexd | |
16 | 8 | ex | |
17 | 2 16 | ralrimi | |
18 | 3 | fnmptf | |
19 | 17 18 | syl | |
20 | eqid | |
|
21 | 20 | rnmpt | |
22 | 21 | a1i | |
23 | dff1o2 | |
|
24 | 19 6 22 23 | syl3anbrc | |
25 | simpr | |
|
26 | 3 | fvmpt2f | |
27 | 25 8 26 | syl2anc | |
28 | vex | |
|
29 | eqeq1 | |
|
30 | 29 | rexbidv | |
31 | 28 30 | elab | |
32 | 4 | reximi | |
33 | 31 32 | sylbi | |
34 | nfcv | |
|
35 | 1 34 | nfel | |
36 | eleq1 | |
|
37 | 7 36 | syl5ibrcom | |
38 | 37 | ex | |
39 | 2 35 38 | rexlimd | |
40 | 39 | imp | |
41 | 33 40 | sylan2 | |
42 | 2 1 9 11 3 12 4 15 24 27 41 | esumf1o | |
43 | 42 | eqcomd | |