Metamath Proof Explorer


Theorem esumc

Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses esumc.0 _ k D
esumc.1 k φ
esumc.2 _ k A
esumc.3 y = C D = B
esumc.4 φ A V
esumc.5 φ Fun k A C -1
esumc.6 φ k A B 0 +∞
esumc.7 φ k A C W
Assertion esumc φ * k A B = * y z | k A z = C D

Proof

Step Hyp Ref Expression
1 esumc.0 _ k D
2 esumc.1 k φ
3 esumc.2 _ k A
4 esumc.3 y = C D = B
5 esumc.4 φ A V
6 esumc.5 φ Fun k A C -1
7 esumc.6 φ k A B 0 +∞
8 esumc.7 φ k A C W
9 nfcv _ y B
10 nfre1 k k A z = C
11 10 nfab _ k z | k A z = C
12 nfmpt1 _ k k A C
13 elex A V A V
14 5 13 syl φ A V
15 3 14 abrexexd φ z | k A z = C V
16 8 ex φ k A C W
17 2 16 ralrimi φ k A C W
18 3 fnmptf k A C W k A C Fn A
19 17 18 syl φ k A C Fn A
20 eqid k A C = k A C
21 20 rnmpt ran k A C = z | k A z = C
22 21 a1i φ ran k A C = z | k A z = C
23 dff1o2 k A C : A 1-1 onto z | k A z = C k A C Fn A Fun k A C -1 ran k A C = z | k A z = C
24 19 6 22 23 syl3anbrc φ k A C : A 1-1 onto z | k A z = C
25 simpr φ k A k A
26 3 fvmpt2f k A C W k A C k = C
27 25 8 26 syl2anc φ k A k A C k = C
28 vex y V
29 eqeq1 z = y z = C y = C
30 29 rexbidv z = y k A z = C k A y = C
31 28 30 elab y z | k A z = C k A y = C
32 4 reximi k A y = C k A D = B
33 31 32 sylbi y z | k A z = C k A D = B
34 nfcv _ k 0 +∞
35 1 34 nfel k D 0 +∞
36 eleq1 D = B D 0 +∞ B 0 +∞
37 7 36 syl5ibrcom φ k A D = B D 0 +∞
38 37 ex φ k A D = B D 0 +∞
39 2 35 38 rexlimd φ k A D = B D 0 +∞
40 39 imp φ k A D = B D 0 +∞
41 33 40 sylan2 φ y z | k A z = C D 0 +∞
42 2 1 9 11 3 12 4 15 24 27 41 esumf1o φ * y z | k A z = C D = * k A B
43 42 eqcomd φ * k A B = * y z | k A z = C D