Metamath Proof Explorer


Theorem esumc

Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses esumc.0 _kD
esumc.1 kφ
esumc.2 _kA
esumc.3 y=CD=B
esumc.4 φAV
esumc.5 φFunkAC-1
esumc.6 φkAB0+∞
esumc.7 φkACW
Assertion esumc φ*kAB=*yz|kAz=CD

Proof

Step Hyp Ref Expression
1 esumc.0 _kD
2 esumc.1 kφ
3 esumc.2 _kA
4 esumc.3 y=CD=B
5 esumc.4 φAV
6 esumc.5 φFunkAC-1
7 esumc.6 φkAB0+∞
8 esumc.7 φkACW
9 nfcv _yB
10 nfre1 kkAz=C
11 10 nfab _kz|kAz=C
12 nfmpt1 _kkAC
13 elex AVAV
14 5 13 syl φAV
15 3 14 abrexexd φz|kAz=CV
16 8 ex φkACW
17 2 16 ralrimi φkACW
18 3 fnmptf kACWkACFnA
19 17 18 syl φkACFnA
20 eqid kAC=kAC
21 20 rnmpt rankAC=z|kAz=C
22 21 a1i φrankAC=z|kAz=C
23 dff1o2 kAC:A1-1 ontoz|kAz=CkACFnAFunkAC-1rankAC=z|kAz=C
24 19 6 22 23 syl3anbrc φkAC:A1-1 ontoz|kAz=C
25 simpr φkAkA
26 3 fvmpt2f kACWkACk=C
27 25 8 26 syl2anc φkAkACk=C
28 vex yV
29 eqeq1 z=yz=Cy=C
30 29 rexbidv z=ykAz=CkAy=C
31 28 30 elab yz|kAz=CkAy=C
32 4 reximi kAy=CkAD=B
33 31 32 sylbi yz|kAz=CkAD=B
34 nfcv _k0+∞
35 1 34 nfel kD0+∞
36 eleq1 D=BD0+∞B0+∞
37 7 36 syl5ibrcom φkAD=BD0+∞
38 37 ex φkAD=BD0+∞
39 2 35 38 rexlimd φkAD=BD0+∞
40 39 imp φkAD=BD0+∞
41 33 40 sylan2 φyz|kAz=CD0+∞
42 2 1 9 11 3 12 4 15 24 27 41 esumf1o φ*yz|kAz=CD=*kAB
43 42 eqcomd φ*kAB=*yz|kAz=CD