Description: Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real-valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | esumfsup.1 | |
|
Assertion | esumfsupre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumfsup.1 | |
|
2 | icossicc | |
|
3 | fss | |
|
4 | 2 3 | mpan2 | |
5 | 1 | esumfsup | |
6 | 4 5 | syl | |
7 | 1zzd | |
|
8 | elnnuz | |
|
9 | ffvelcdm | |
|
10 | 8 9 | sylan2br | |
11 | ge0addcl | |
|
12 | 11 | adantl | |
13 | rge0ssre | |
|
14 | simprl | |
|
15 | 13 14 | sselid | |
16 | simprr | |
|
17 | 13 16 | sselid | |
18 | rexadd | |
|
19 | 18 | eqcomd | |
20 | 15 17 19 | syl2anc | |
21 | 7 10 12 20 | seqfeq3 | |
22 | 21 | rneqd | |
23 | 22 | supeq1d | |
24 | 6 23 | eqtr4d | |