Description: The N -th derivative of H is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem22.s | |
|
etransclem22.x | |
||
etransclem22.p | |
||
etransclem22.h | |
||
etransclem22.J | |
||
etransclem22.n | |
||
Assertion | etransclem22 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem22.s | |
|
2 | etransclem22.x | |
|
3 | etransclem22.p | |
|
4 | etransclem22.h | |
|
5 | etransclem22.J | |
|
6 | etransclem22.n | |
|
7 | 1 2 3 4 5 6 | etransclem17 | |
8 | simpr | |
|
9 | 8 | iftrued | |
10 | 9 | mpteq2dv | |
11 | 1 2 | dvdmsscn | |
12 | 0cnd | |
|
13 | ssid | |
|
14 | 13 | a1i | |
15 | 11 12 14 | constcncfg | |
16 | 15 | adantr | |
17 | 10 16 | eqeltrd | |
18 | simpr | |
|
19 | 18 | iffalsed | |
20 | 19 | mpteq2dv | |
21 | nfv | |
|
22 | 11 14 | idcncfg | |
23 | 5 | elfzelzd | |
24 | 23 | zcnd | |
25 | 11 24 14 | constcncfg | |
26 | 22 25 | subcncf | |
27 | 26 | adantr | |
28 | 13 | a1i | |
29 | nnm1nn0 | |
|
30 | 3 29 | syl | |
31 | 3 | nnnn0d | |
32 | 30 31 | ifcld | |
33 | 32 | faccld | |
34 | 33 | nncnd | |
35 | 34 | adantr | |
36 | 32 | nn0zd | |
37 | 6 | nn0zd | |
38 | 36 37 | zsubcld | |
39 | 38 | adantr | |
40 | 6 | nn0red | |
41 | 40 | adantr | |
42 | 32 | nn0red | |
43 | 42 | adantr | |
44 | 41 43 18 | nltled | |
45 | 43 41 | subge0d | |
46 | 44 45 | mpbird | |
47 | elnn0z | |
|
48 | 39 46 47 | sylanbrc | |
49 | 48 | faccld | |
50 | 49 | nncnd | |
51 | 49 | nnne0d | |
52 | 35 50 51 | divcld | |
53 | 28 52 28 | constcncfg | |
54 | expcncf | |
|
55 | 48 54 | syl | |
56 | 53 55 | mulcncf | |
57 | oveq1 | |
|
58 | 57 | oveq2d | |
59 | 21 27 56 28 58 | cncfcompt2 | |
60 | 20 59 | eqeltrd | |
61 | 17 60 | pm2.61dan | |
62 | 7 61 | eqeltrd | |