Metamath Proof Explorer


Theorem etransclem22

Description: The N -th derivative of H is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem22.s φS
etransclem22.x φXTopOpenfld𝑡S
etransclem22.p φP
etransclem22.h H=j0MxXxjifj=0P1P
etransclem22.J φJ0M
etransclem22.n φN0
Assertion etransclem22 φSDnHJN:Xcn

Proof

Step Hyp Ref Expression
1 etransclem22.s φS
2 etransclem22.x φXTopOpenfld𝑡S
3 etransclem22.p φP
4 etransclem22.h H=j0MxXxjifj=0P1P
5 etransclem22.J φJ0M
6 etransclem22.n φN0
7 1 2 3 4 5 6 etransclem17 φSDnHJN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
8 simpr φifJ=0P1P<NifJ=0P1P<N
9 8 iftrued φifJ=0P1P<NififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=0
10 9 mpteq2dv φifJ=0P1P<NxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=xX0
11 1 2 dvdmsscn φX
12 0cnd φ0
13 ssid
14 13 a1i φ
15 11 12 14 constcncfg φxX0:Xcn
16 15 adantr φifJ=0P1P<NxX0:Xcn
17 10 16 eqeltrd φifJ=0P1P<NxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN:Xcn
18 simpr φ¬ifJ=0P1P<N¬ifJ=0P1P<N
19 18 iffalsed φ¬ifJ=0P1P<NififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
20 19 mpteq2dv φ¬ifJ=0P1P<NxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN=xXifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
21 nfv xφ¬ifJ=0P1P<N
22 11 14 idcncfg φxXx:Xcn
23 5 elfzelzd φJ
24 23 zcnd φJ
25 11 24 14 constcncfg φxXJ:Xcn
26 22 25 subcncf φxXxJ:Xcn
27 26 adantr φ¬ifJ=0P1P<NxXxJ:Xcn
28 13 a1i φ¬ifJ=0P1P<N
29 nnm1nn0 PP10
30 3 29 syl φP10
31 3 nnnn0d φP0
32 30 31 ifcld φifJ=0P1P0
33 32 faccld φifJ=0P1P!
34 33 nncnd φifJ=0P1P!
35 34 adantr φ¬ifJ=0P1P<NifJ=0P1P!
36 32 nn0zd φifJ=0P1P
37 6 nn0zd φN
38 36 37 zsubcld φifJ=0P1PN
39 38 adantr φ¬ifJ=0P1P<NifJ=0P1PN
40 6 nn0red φN
41 40 adantr φ¬ifJ=0P1P<NN
42 32 nn0red φifJ=0P1P
43 42 adantr φ¬ifJ=0P1P<NifJ=0P1P
44 41 43 18 nltled φ¬ifJ=0P1P<NNifJ=0P1P
45 43 41 subge0d φ¬ifJ=0P1P<N0ifJ=0P1PNNifJ=0P1P
46 44 45 mpbird φ¬ifJ=0P1P<N0ifJ=0P1PN
47 elnn0z ifJ=0P1PN0ifJ=0P1PN0ifJ=0P1PN
48 39 46 47 sylanbrc φ¬ifJ=0P1P<NifJ=0P1PN0
49 48 faccld φ¬ifJ=0P1P<NifJ=0P1PN!
50 49 nncnd φ¬ifJ=0P1P<NifJ=0P1PN!
51 49 nnne0d φ¬ifJ=0P1P<NifJ=0P1PN!0
52 35 50 51 divcld φ¬ifJ=0P1P<NifJ=0P1P!ifJ=0P1PN!
53 28 52 28 constcncfg φ¬ifJ=0P1P<NyifJ=0P1P!ifJ=0P1PN!:cn
54 expcncf ifJ=0P1PN0yyifJ=0P1PN:cn
55 48 54 syl φ¬ifJ=0P1P<NyyifJ=0P1PN:cn
56 53 55 mulcncf φ¬ifJ=0P1P<NyifJ=0P1P!ifJ=0P1PN!yifJ=0P1PN:cn
57 oveq1 y=xJyifJ=0P1PN=xJifJ=0P1PN
58 57 oveq2d y=xJifJ=0P1P!ifJ=0P1PN!yifJ=0P1PN=ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
59 21 27 56 28 58 cncfcompt2 φ¬ifJ=0P1P<NxXifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN:Xcn
60 20 59 eqeltrd φ¬ifJ=0P1P<NxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN:Xcn
61 17 60 pm2.61dan φxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN:Xcn
62 7 61 eqeltrd φSDnHJN:Xcn