Metamath Proof Explorer


Theorem eulerpartlemf

Description: Lemma for eulerpart : Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
Assertion eulerpartlemf ATRtJAt=0

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eldif tJt¬tJ
11 breq2 z=t2z2t
12 11 notbid z=t¬2z¬2t
13 12 4 elrab2 tJt¬2t
14 13 simplbi2 t¬2ttJ
15 14 con1d t¬tJ2t
16 15 imp t¬tJ2t
17 10 16 sylbi tJ2t
18 17 adantl ATRtJ2t
19 18 adantr ATRtJAt2t
20 simpll ATRtJAtATR
21 eldifi tJt
22 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ATRA0A-1FinA-1J
23 22 simp1bi ATRA0
24 elmapi A0A:0
25 23 24 syl ATRA:0
26 ffn A:0AFn
27 elpreima AFntA-1tAt
28 25 26 27 3syl ATRtA-1tAt
29 28 baibd ATRttA-1At
30 21 29 sylan2 ATRtJtA-1At
31 30 biimpar ATRtJAttA-1
32 22 simp3bi ATRA-1J
33 32 sselda ATRtA-1tJ
34 13 simprbi tJ¬2t
35 33 34 syl ATRtA-1¬2t
36 20 31 35 syl2anc ATRtJAt¬2t
37 19 36 pm2.65da ATRtJ¬At
38 25 adantr ATRtJA:0
39 21 adantl ATRtJt
40 38 39 ffvelcdmd ATRtJAt0
41 elnn0 At0AtAt=0
42 40 41 sylib ATRtJAtAt=0
43 orel1 ¬AtAtAt=0At=0
44 37 42 43 sylc ATRtJAt=0