Metamath Proof Explorer


Theorem evlf2

Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfval.e E=CevalFD
evlfval.c φCCat
evlfval.d φDCat
evlfval.b B=BaseC
evlfval.h H=HomC
evlfval.o ·˙=compD
evlfval.n N=CNatD
evlf2.f φFCFuncD
evlf2.g φGCFuncD
evlf2.x φXB
evlf2.y φYB
evlf2.l L=FX2ndEGY
Assertion evlf2 φL=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg

Proof

Step Hyp Ref Expression
1 evlfval.e E=CevalFD
2 evlfval.c φCCat
3 evlfval.d φDCat
4 evlfval.b B=BaseC
5 evlfval.h H=HomC
6 evlfval.o ·˙=compD
7 evlfval.n N=CNatD
8 evlf2.f φFCFuncD
9 evlf2.g φGCFuncD
10 evlf2.x φXB
11 evlf2.y φYB
12 evlf2.l L=FX2ndEGY
13 1 2 3 4 5 6 7 evlfval φE=fCFuncD,xB1stfxxCFuncD×B,yCFuncD×B1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg
14 ovex CFuncDV
15 4 fvexi BV
16 14 15 mpoex fCFuncD,xB1stfxV
17 14 15 xpex CFuncD×BV
18 17 17 mpoex xCFuncD×B,yCFuncD×B1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndygV
19 16 18 op2ndd E=fCFuncD,xB1stfxxCFuncD×B,yCFuncD×B1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg2ndE=xCFuncD×B,yCFuncD×B1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg
20 13 19 syl φ2ndE=xCFuncD×B,yCFuncD×B1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg
21 fvexd φx=FXy=GY1stxV
22 simprl φx=FXy=GYx=FX
23 22 fveq2d φx=FXy=GY1stx=1stFX
24 op1stg FCFuncDXB1stFX=F
25 8 10 24 syl2anc φ1stFX=F
26 25 adantr φx=FXy=GY1stFX=F
27 23 26 eqtrd φx=FXy=GY1stx=F
28 fvexd φx=FXy=GYm=F1styV
29 simplrr φx=FXy=GYm=Fy=GY
30 29 fveq2d φx=FXy=GYm=F1sty=1stGY
31 op1stg GCFuncDYB1stGY=G
32 9 11 31 syl2anc φ1stGY=G
33 32 ad2antrr φx=FXy=GYm=F1stGY=G
34 30 33 eqtrd φx=FXy=GYm=F1sty=G
35 simplr φx=FXy=GYm=Fn=Gm=F
36 simpr φx=FXy=GYm=Fn=Gn=G
37 35 36 oveq12d φx=FXy=GYm=Fn=GmNn=FNG
38 22 ad2antrr φx=FXy=GYm=Fn=Gx=FX
39 38 fveq2d φx=FXy=GYm=Fn=G2ndx=2ndFX
40 op2ndg FCFuncDXB2ndFX=X
41 8 10 40 syl2anc φ2ndFX=X
42 41 ad3antrrr φx=FXy=GYm=Fn=G2ndFX=X
43 39 42 eqtrd φx=FXy=GYm=Fn=G2ndx=X
44 29 adantr φx=FXy=GYm=Fn=Gy=GY
45 44 fveq2d φx=FXy=GYm=Fn=G2ndy=2ndGY
46 op2ndg GCFuncDYB2ndGY=Y
47 9 11 46 syl2anc φ2ndGY=Y
48 47 ad3antrrr φx=FXy=GYm=Fn=G2ndGY=Y
49 45 48 eqtrd φx=FXy=GYm=Fn=G2ndy=Y
50 43 49 oveq12d φx=FXy=GYm=Fn=G2ndxH2ndy=XHY
51 35 fveq2d φx=FXy=GYm=Fn=G1stm=1stF
52 51 43 fveq12d φx=FXy=GYm=Fn=G1stm2ndx=1stFX
53 51 49 fveq12d φx=FXy=GYm=Fn=G1stm2ndy=1stFY
54 52 53 opeq12d φx=FXy=GYm=Fn=G1stm2ndx1stm2ndy=1stFX1stFY
55 36 fveq2d φx=FXy=GYm=Fn=G1stn=1stG
56 55 49 fveq12d φx=FXy=GYm=Fn=G1stn2ndy=1stGY
57 54 56 oveq12d φx=FXy=GYm=Fn=G1stm2ndx1stm2ndy·˙1stn2ndy=1stFX1stFY·˙1stGY
58 49 fveq2d φx=FXy=GYm=Fn=Ga2ndy=aY
59 35 fveq2d φx=FXy=GYm=Fn=G2ndm=2ndF
60 59 43 49 oveq123d φx=FXy=GYm=Fn=G2ndx2ndm2ndy=X2ndFY
61 60 fveq1d φx=FXy=GYm=Fn=G2ndx2ndm2ndyg=X2ndFYg
62 57 58 61 oveq123d φx=FXy=GYm=Fn=Ga2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg=aY1stFX1stFY·˙1stGYX2ndFYg
63 37 50 62 mpoeq123dv φx=FXy=GYm=Fn=GamNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg
64 28 34 63 csbied2 φx=FXy=GYm=F1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg
65 21 27 64 csbied2 φx=FXy=GY1stx/m1sty/namNn,g2ndxH2ndya2ndy1stm2ndx1stm2ndy·˙1stn2ndy2ndx2ndm2ndyg=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg
66 8 10 opelxpd φFXCFuncD×B
67 9 11 opelxpd φGYCFuncD×B
68 ovex FNGV
69 ovex XHYV
70 68 69 mpoex aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYgV
71 70 a1i φaFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYgV
72 20 65 66 67 71 ovmpod φFX2ndEGY=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg
73 12 72 eqtrid φL=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg