Metamath Proof Explorer


Theorem evls1val

Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019)

Ref Expression
Hypotheses evls1fval.q Q = S evalSub 1 R
evls1fval.e E = 1 𝑜 evalSub S
evls1fval.b B = Base S
evls1val.m M = 1 𝑜 mPoly S 𝑠 R
evls1val.k K = Base M
Assertion evls1val S CRing R SubRing S A K Q A = E R A y B 1 𝑜 × y

Proof

Step Hyp Ref Expression
1 evls1fval.q Q = S evalSub 1 R
2 evls1fval.e E = 1 𝑜 evalSub S
3 evls1fval.b B = Base S
4 evls1val.m M = 1 𝑜 mPoly S 𝑠 R
5 evls1val.k K = Base M
6 3 subrgss R SubRing S R B
7 6 adantl S CRing R SubRing S R B
8 elpwg R SubRing S R 𝒫 B R B
9 8 adantl S CRing R SubRing S R 𝒫 B R B
10 7 9 mpbird S CRing R SubRing S R 𝒫 B
11 1 2 3 evls1fval S CRing R 𝒫 B Q = x B B 1 𝑜 x y B 1 𝑜 × y E R
12 10 11 syldan S CRing R SubRing S Q = x B B 1 𝑜 x y B 1 𝑜 × y E R
13 12 fveq1d S CRing R SubRing S Q A = x B B 1 𝑜 x y B 1 𝑜 × y E R A
14 13 3adant3 S CRing R SubRing S A K Q A = x B B 1 𝑜 x y B 1 𝑜 × y E R A
15 1on 1 𝑜 On
16 simp1 S CRing R SubRing S A K S CRing
17 simp2 S CRing R SubRing S A K R SubRing S
18 2 fveq1i E R = 1 𝑜 evalSub S R
19 eqid S 𝑠 R = S 𝑠 R
20 eqid S 𝑠 B 1 𝑜 = S 𝑠 B 1 𝑜
21 18 4 19 20 3 evlsrhm 1 𝑜 On S CRing R SubRing S E R M RingHom S 𝑠 B 1 𝑜
22 15 16 17 21 mp3an2i S CRing R SubRing S A K E R M RingHom S 𝑠 B 1 𝑜
23 eqid Base S 𝑠 B 1 𝑜 = Base S 𝑠 B 1 𝑜
24 5 23 rhmf E R M RingHom S 𝑠 B 1 𝑜 E R : K Base S 𝑠 B 1 𝑜
25 22 24 syl S CRing R SubRing S A K E R : K Base S 𝑠 B 1 𝑜
26 simp3 S CRing R SubRing S A K A K
27 fvco3 E R : K Base S 𝑠 B 1 𝑜 A K x B B 1 𝑜 x y B 1 𝑜 × y E R A = x B B 1 𝑜 x y B 1 𝑜 × y E R A
28 25 26 27 syl2anc S CRing R SubRing S A K x B B 1 𝑜 x y B 1 𝑜 × y E R A = x B B 1 𝑜 x y B 1 𝑜 × y E R A
29 25 26 ffvelrnd S CRing R SubRing S A K E R A Base S 𝑠 B 1 𝑜
30 ovex B 1 𝑜 V
31 20 3 pwsbas S CRing B 1 𝑜 V B B 1 𝑜 = Base S 𝑠 B 1 𝑜
32 16 30 31 sylancl S CRing R SubRing S A K B B 1 𝑜 = Base S 𝑠 B 1 𝑜
33 29 32 eleqtrrd S CRing R SubRing S A K E R A B B 1 𝑜
34 coeq1 x = E R A x y B 1 𝑜 × y = E R A y B 1 𝑜 × y
35 eqid x B B 1 𝑜 x y B 1 𝑜 × y = x B B 1 𝑜 x y B 1 𝑜 × y
36 fvex E R A V
37 3 fvexi B V
38 37 mptex y B 1 𝑜 × y V
39 36 38 coex E R A y B 1 𝑜 × y V
40 34 35 39 fvmpt E R A B B 1 𝑜 x B B 1 𝑜 x y B 1 𝑜 × y E R A = E R A y B 1 𝑜 × y
41 33 40 syl S CRing R SubRing S A K x B B 1 𝑜 x y B 1 𝑜 × y E R A = E R A y B 1 𝑜 × y
42 14 28 41 3eqtrd S CRing R SubRing S A K Q A = E R A y B 1 𝑜 × y