Metamath Proof Explorer


Theorem evls1val

Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019)

Ref Expression
Hypotheses evls1fval.q Q=SevalSub1R
evls1fval.e E=1𝑜evalSubS
evls1fval.b B=BaseS
evls1val.m M=1𝑜mPolyS𝑠R
evls1val.k K=BaseM
Assertion evls1val SCRingRSubRingSAKQA=ERAyB1𝑜×y

Proof

Step Hyp Ref Expression
1 evls1fval.q Q=SevalSub1R
2 evls1fval.e E=1𝑜evalSubS
3 evls1fval.b B=BaseS
4 evls1val.m M=1𝑜mPolyS𝑠R
5 evls1val.k K=BaseM
6 3 subrgss RSubRingSRB
7 6 adantl SCRingRSubRingSRB
8 elpwg RSubRingSR𝒫BRB
9 8 adantl SCRingRSubRingSR𝒫BRB
10 7 9 mpbird SCRingRSubRingSR𝒫B
11 1 2 3 evls1fval SCRingR𝒫BQ=xBB1𝑜xyB1𝑜×yER
12 10 11 syldan SCRingRSubRingSQ=xBB1𝑜xyB1𝑜×yER
13 12 fveq1d SCRingRSubRingSQA=xBB1𝑜xyB1𝑜×yERA
14 13 3adant3 SCRingRSubRingSAKQA=xBB1𝑜xyB1𝑜×yERA
15 1on 1𝑜On
16 simp1 SCRingRSubRingSAKSCRing
17 simp2 SCRingRSubRingSAKRSubRingS
18 2 fveq1i ER=1𝑜evalSubSR
19 eqid S𝑠R=S𝑠R
20 eqid S𝑠B1𝑜=S𝑠B1𝑜
21 18 4 19 20 3 evlsrhm 1𝑜OnSCRingRSubRingSERMRingHomS𝑠B1𝑜
22 15 16 17 21 mp3an2i SCRingRSubRingSAKERMRingHomS𝑠B1𝑜
23 eqid BaseS𝑠B1𝑜=BaseS𝑠B1𝑜
24 5 23 rhmf ERMRingHomS𝑠B1𝑜ER:KBaseS𝑠B1𝑜
25 22 24 syl SCRingRSubRingSAKER:KBaseS𝑠B1𝑜
26 simp3 SCRingRSubRingSAKAK
27 fvco3 ER:KBaseS𝑠B1𝑜AKxBB1𝑜xyB1𝑜×yERA=xBB1𝑜xyB1𝑜×yERA
28 25 26 27 syl2anc SCRingRSubRingSAKxBB1𝑜xyB1𝑜×yERA=xBB1𝑜xyB1𝑜×yERA
29 25 26 ffvelcdmd SCRingRSubRingSAKERABaseS𝑠B1𝑜
30 ovex B1𝑜V
31 20 3 pwsbas SCRingB1𝑜VBB1𝑜=BaseS𝑠B1𝑜
32 16 30 31 sylancl SCRingRSubRingSAKBB1𝑜=BaseS𝑠B1𝑜
33 29 32 eleqtrrd SCRingRSubRingSAKERABB1𝑜
34 coeq1 x=ERAxyB1𝑜×y=ERAyB1𝑜×y
35 eqid xBB1𝑜xyB1𝑜×y=xBB1𝑜xyB1𝑜×y
36 fvex ERAV
37 3 fvexi BV
38 37 mptex yB1𝑜×yV
39 36 38 coex ERAyB1𝑜×yV
40 34 35 39 fvmpt ERABB1𝑜xBB1𝑜xyB1𝑜×yERA=ERAyB1𝑜×y
41 33 40 syl SCRingRSubRingSAKxBB1𝑜xyB1𝑜×yERA=ERAyB1𝑜×y
42 14 28 41 3eqtrd SCRingRSubRingSAKQA=ERAyB1𝑜×y