Metamath Proof Explorer


Theorem evlselvlem

Description: Lemma for evlselv . Used to re-index to and from bags of variables in I and bags of variables in the subsets J and I \ J . (Contributed by SN, 10-Mar-2025)

Ref Expression
Hypotheses evlselvlem.d D=h0I|h-1Fin
evlselvlem.e E=g0J|g-1Fin
evlselvlem.c C=f0IJ|f-1Fin
evlselvlem.h H=cC,eEce
evlselvlem.i φIV
evlselvlem.j φJI
Assertion evlselvlem φH:C×E1-1 ontoD

Proof

Step Hyp Ref Expression
1 evlselvlem.d D=h0I|h-1Fin
2 evlselvlem.e E=g0J|g-1Fin
3 evlselvlem.c C=f0IJ|f-1Fin
4 evlselvlem.h H=cC,eEce
5 evlselvlem.i φIV
6 evlselvlem.j φJI
7 3 psrbagf cCc:IJ0
8 7 ad2antrl φcCeEc:IJ0
9 2 psrbagf eEe:J0
10 9 ad2antll φcCeEe:J0
11 disjdifr IJJ=
12 11 a1i φcCeEIJJ=
13 8 10 12 fun2d φcCeEce:IJJ0
14 undifr JIIJJ=I
15 6 14 sylib φIJJ=I
16 15 adantr φcCeEIJJ=I
17 16 feq2d φcCeEce:IJJ0ce:I0
18 13 17 mpbid φcCeEce:I0
19 unexg cCeEceV
20 19 adantl φcCeEceV
21 0zd φcCeE0
22 13 ffund φcCeEFunce
23 3 psrbagfsupp cCfinSupp0c
24 23 ad2antrl φcCeEfinSupp0c
25 2 psrbagfsupp eEfinSupp0e
26 25 ad2antll φcCeEfinSupp0e
27 24 26 fsuppun φcCeEcesupp0Fin
28 20 21 22 27 isfsuppd φcCeEfinSupp0ce
29 fcdmnn0fsuppg ceVce:IJJ0finSupp0cece-1Fin
30 20 13 29 syl2anc φcCeEfinSupp0cece-1Fin
31 28 30 mpbid φcCeEce-1Fin
32 5 adantr φcCeEIV
33 1 psrbag IVceDce:I0ce-1Fin
34 32 33 syl φcCeEceDce:I0ce-1Fin
35 18 31 34 mpbir2and φcCeEceD
36 5 adantr φdDIV
37 difssd φdDIJI
38 simpr φdDdD
39 1 3 36 37 38 psrbagres φdDdIJC
40 6 adantr φdDJI
41 1 2 36 40 38 psrbagres φdDdJE
42 1 psrbagf dDd:I0
43 42 adantl φdDd:I0
44 43 freld φdDReld
45 43 fdmd φdDdomd=I
46 40 14 sylib φdDIJJ=I
47 45 46 eqtr4d φdDdomd=IJJ
48 11 a1i φdDIJJ=
49 reldisjun Relddomd=IJJIJJ=d=dIJdJ
50 44 47 48 49 syl3anc φdDd=dIJdJ
51 50 adantrl φcCeEdDd=dIJdJ
52 uneq12 c=dIJe=dJce=dIJdJ
53 52 eqeq2d c=dIJe=dJd=ced=dIJdJ
54 51 53 syl5ibrcom φcCeEdDc=dIJe=dJd=ce
55 8 ffnd φcCeEcFnIJ
56 10 ffnd φcCeEeFnJ
57 fnunres1 cFnIJeFnJIJJ=ceIJ=c
58 55 56 12 57 syl3anc φcCeEceIJ=c
59 58 eqcomd φcCeEc=ceIJ
60 fnunres2 cFnIJeFnJIJJ=ceJ=e
61 55 56 12 60 syl3anc φcCeEceJ=e
62 61 eqcomd φcCeEe=ceJ
63 59 62 jca φcCeEc=ceIJe=ceJ
64 63 adantrr φcCeEdDc=ceIJe=ceJ
65 reseq1 d=cedIJ=ceIJ
66 65 eqeq2d d=cec=dIJc=ceIJ
67 reseq1 d=cedJ=ceJ
68 67 eqeq2d d=cee=dJe=ceJ
69 66 68 anbi12d d=cec=dIJe=dJc=ceIJe=ceJ
70 64 69 syl5ibrcom φcCeEdDd=cec=dIJe=dJ
71 54 70 impbid φcCeEdDc=dIJe=dJd=ce
72 4 35 39 41 71 f1o2d2 φH:C×E1-1 ontoD