Metamath Proof Explorer


Theorem evlsgsumadd

Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsumadd.q Q=IevalSubSR
evlsgsumadd.w W=ImPolyU
evlsgsumadd.0 0˙=0W
evlsgsumadd.u U=S𝑠R
evlsgsumadd.p P=S𝑠KI
evlsgsumadd.k K=BaseS
evlsgsumadd.b B=BaseW
evlsgsumadd.i φIV
evlsgsumadd.s φSCRing
evlsgsumadd.r φRSubRingS
evlsgsumadd.y φxNYB
evlsgsumadd.n φN0
evlsgsumadd.f φfinSupp0˙xNY
Assertion evlsgsumadd φQWxNY=PxNQY

Proof

Step Hyp Ref Expression
1 evlsgsumadd.q Q=IevalSubSR
2 evlsgsumadd.w W=ImPolyU
3 evlsgsumadd.0 0˙=0W
4 evlsgsumadd.u U=S𝑠R
5 evlsgsumadd.p P=S𝑠KI
6 evlsgsumadd.k K=BaseS
7 evlsgsumadd.b B=BaseW
8 evlsgsumadd.i φIV
9 evlsgsumadd.s φSCRing
10 evlsgsumadd.r φRSubRingS
11 evlsgsumadd.y φxNYB
12 evlsgsumadd.n φN0
13 evlsgsumadd.f φfinSupp0˙xNY
14 4 subrgring RSubRingSURing
15 10 14 syl φURing
16 2 mplring IVURingWRing
17 8 15 16 syl2anc φWRing
18 ringcmn WRingWCMnd
19 17 18 syl φWCMnd
20 crngring SCRingSRing
21 9 20 syl φSRing
22 ovex KIV
23 21 22 jctir φSRingKIV
24 5 pwsring SRingKIVPRing
25 ringmnd PRingPMnd
26 23 24 25 3syl φPMnd
27 nn0ex 0V
28 27 a1i φ0V
29 28 12 ssexd φNV
30 1 2 4 5 6 evlsrhm IVSCRingRSubRingSQWRingHomP
31 8 9 10 30 syl3anc φQWRingHomP
32 rhmghm QWRingHomPQWGrpHomP
33 ghmmhm QWGrpHomPQWMndHomP
34 31 32 33 3syl φQWMndHomP
35 7 3 19 26 29 34 11 13 gsummptmhm φPxNQY=QWxNY
36 35 eqcomd φQWxNY=PxNQY