Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsgsumadd.q | |
|
evlsgsumadd.w | |
||
evlsgsumadd.0 | |
||
evlsgsumadd.u | |
||
evlsgsumadd.p | |
||
evlsgsumadd.k | |
||
evlsgsumadd.b | |
||
evlsgsumadd.i | |
||
evlsgsumadd.s | |
||
evlsgsumadd.r | |
||
evlsgsumadd.y | |
||
evlsgsumadd.n | |
||
evlsgsumadd.f | |
||
Assertion | evlsgsumadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsgsumadd.q | |
|
2 | evlsgsumadd.w | |
|
3 | evlsgsumadd.0 | |
|
4 | evlsgsumadd.u | |
|
5 | evlsgsumadd.p | |
|
6 | evlsgsumadd.k | |
|
7 | evlsgsumadd.b | |
|
8 | evlsgsumadd.i | |
|
9 | evlsgsumadd.s | |
|
10 | evlsgsumadd.r | |
|
11 | evlsgsumadd.y | |
|
12 | evlsgsumadd.n | |
|
13 | evlsgsumadd.f | |
|
14 | 4 | subrgring | |
15 | 10 14 | syl | |
16 | 2 | mplring | |
17 | 8 15 16 | syl2anc | |
18 | ringcmn | |
|
19 | 17 18 | syl | |
20 | crngring | |
|
21 | 9 20 | syl | |
22 | ovex | |
|
23 | 21 22 | jctir | |
24 | 5 | pwsring | |
25 | ringmnd | |
|
26 | 23 24 25 | 3syl | |
27 | nn0ex | |
|
28 | 27 | a1i | |
29 | 28 12 | ssexd | |
30 | 1 2 4 5 6 | evlsrhm | |
31 | 8 9 10 30 | syl3anc | |
32 | rhmghm | |
|
33 | ghmmhm | |
|
34 | 31 32 33 | 3syl | |
35 | 7 3 19 26 29 34 11 13 | gsummptmhm | |
36 | 35 | eqcomd | |