Metamath Proof Explorer


Theorem evlsmhpvvval

Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsmhpvvval.q Q = I evalSub S R
evlsmhpvvval.p H = I mHomP U
evlsmhpvvval.u U = S 𝑠 R
evlsmhpvvval.d D = h 0 I | h -1 Fin
evlsmhpvvval.g G = g D | fld 𝑠 0 g = N
evlsmhpvvval.k K = Base S
evlsmhpvvval.m M = mulGrp S
evlsmhpvvval.w × ˙ = M
evlsmhpvvval.x · ˙ = S
evlsmhpvvval.s φ S CRing
evlsmhpvvval.r φ R SubRing S
evlsmhpvvval.f φ F H N
evlsmhpvvval.a φ A K I
Assertion evlsmhpvvval φ Q F A = S b G F b · ˙ M i I b i × ˙ A i

Proof

Step Hyp Ref Expression
1 evlsmhpvvval.q Q = I evalSub S R
2 evlsmhpvvval.p H = I mHomP U
3 evlsmhpvvval.u U = S 𝑠 R
4 evlsmhpvvval.d D = h 0 I | h -1 Fin
5 evlsmhpvvval.g G = g D | fld 𝑠 0 g = N
6 evlsmhpvvval.k K = Base S
7 evlsmhpvvval.m M = mulGrp S
8 evlsmhpvvval.w × ˙ = M
9 evlsmhpvvval.x · ˙ = S
10 evlsmhpvvval.s φ S CRing
11 evlsmhpvvval.r φ R SubRing S
12 evlsmhpvvval.f φ F H N
13 evlsmhpvvval.a φ A K I
14 eqid I mPoly U = I mPoly U
15 eqid Base I mPoly U = Base I mPoly U
16 reldmmhp Rel dom mHomP
17 16 2 12 elfvov1 φ I V
18 2 14 15 12 mhpmpl φ F Base I mPoly U
19 1 14 15 3 4 6 7 8 9 17 10 11 18 13 evlsvvval φ Q F A = S b D F b · ˙ M i I b i × ˙ A i
20 eqid 0 S = 0 S
21 10 crngringd φ S Ring
22 21 ringcmnd φ S CMnd
23 ovex 0 I V
24 4 23 rabex2 D V
25 24 a1i φ D V
26 21 adantr φ b D S Ring
27 eqid Base U = Base U
28 14 27 15 4 18 mplelf φ F : D Base U
29 3 subrgbas R SubRing S R = Base U
30 6 subrgss R SubRing S R K
31 29 30 eqsstrrd R SubRing S Base U K
32 11 31 syl φ Base U K
33 28 32 fssd φ F : D K
34 33 ffvelcdmda φ b D F b K
35 17 adantr φ b D I V
36 10 adantr φ b D S CRing
37 13 adantr φ b D A K I
38 simpr φ b D b D
39 4 6 7 8 35 36 37 38 evlsvvvallem φ b D M i I b i × ˙ A i K
40 6 9 26 34 39 ringcld φ b D F b · ˙ M i I b i × ˙ A i K
41 40 fmpttd φ b D F b · ˙ M i I b i × ˙ A i : D K
42 3 20 subrg0 R SubRing S 0 S = 0 U
43 11 42 syl φ 0 S = 0 U
44 43 oveq2d φ F supp 0 S = F supp 0 U
45 eqid 0 U = 0 U
46 2 45 4 12 mhpdeg φ F supp 0 U g D | fld 𝑠 0 g = N
47 46 5 sseqtrrdi φ F supp 0 U G
48 44 47 eqsstrd φ F supp 0 S G
49 fvexd φ 0 S V
50 33 48 25 49 suppssr φ b D G F b = 0 S
51 50 oveq1d φ b D G F b · ˙ M i I b i × ˙ A i = 0 S · ˙ M i I b i × ˙ A i
52 21 adantr φ b D G S Ring
53 eldifi b D G b D
54 53 39 sylan2 φ b D G M i I b i × ˙ A i K
55 6 9 20 52 54 ringlzd φ b D G 0 S · ˙ M i I b i × ˙ A i = 0 S
56 51 55 eqtrd φ b D G F b · ˙ M i I b i × ˙ A i = 0 S
57 56 25 suppss2 φ b D F b · ˙ M i I b i × ˙ A i supp 0 S G
58 4 14 3 15 6 7 8 9 17 10 11 18 13 evlsvvvallem2 φ finSupp 0 S b D F b · ˙ M i I b i × ˙ A i
59 6 20 22 25 41 57 58 gsumres φ S b D F b · ˙ M i I b i × ˙ A i G = S b D F b · ˙ M i I b i × ˙ A i
60 5 ssrab3 G D
61 60 a1i φ G D
62 61 resmptd φ b D F b · ˙ M i I b i × ˙ A i G = b G F b · ˙ M i I b i × ˙ A i
63 62 oveq2d φ S b D F b · ˙ M i I b i × ˙ A i G = S b G F b · ˙ M i I b i × ˙ A i
64 19 59 63 3eqtr2d φ Q F A = S b G F b · ˙ M i I b i × ˙ A i