Metamath Proof Explorer


Theorem evlsmhpvvval

Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsmhpvvval.q Q=IevalSubSR
evlsmhpvvval.p H=ImHomPU
evlsmhpvvval.u U=S𝑠R
evlsmhpvvval.d D=h0I|h-1Fin
evlsmhpvvval.g G=gD|fld𝑠0g=N
evlsmhpvvval.k K=BaseS
evlsmhpvvval.m M=mulGrpS
evlsmhpvvval.w ×˙=M
evlsmhpvvval.x ·˙=S
evlsmhpvvval.i φIV
evlsmhpvvval.s φSCRing
evlsmhpvvval.r φRSubRingS
evlsmhpvvval.n φN0
evlsmhpvvval.f φFHN
evlsmhpvvval.a φAKI
Assertion evlsmhpvvval φQFA=SbGFb·˙MiIbi×˙Ai

Proof

Step Hyp Ref Expression
1 evlsmhpvvval.q Q=IevalSubSR
2 evlsmhpvvval.p H=ImHomPU
3 evlsmhpvvval.u U=S𝑠R
4 evlsmhpvvval.d D=h0I|h-1Fin
5 evlsmhpvvval.g G=gD|fld𝑠0g=N
6 evlsmhpvvval.k K=BaseS
7 evlsmhpvvval.m M=mulGrpS
8 evlsmhpvvval.w ×˙=M
9 evlsmhpvvval.x ·˙=S
10 evlsmhpvvval.i φIV
11 evlsmhpvvval.s φSCRing
12 evlsmhpvvval.r φRSubRingS
13 evlsmhpvvval.n φN0
14 evlsmhpvvval.f φFHN
15 evlsmhpvvval.a φAKI
16 eqid ImPolyU=ImPolyU
17 eqid BaseImPolyU=BaseImPolyU
18 3 ovexi UV
19 18 a1i φUV
20 2 16 17 10 19 13 14 mhpmpl φFBaseImPolyU
21 1 16 17 3 4 6 7 8 9 10 11 12 20 15 evlsvvval φQFA=SbDFb·˙MiIbi×˙Ai
22 eqid 0S=0S
23 11 crngringd φSRing
24 23 ringcmnd φSCMnd
25 ovex 0IV
26 4 25 rabex2 DV
27 26 a1i φDV
28 23 adantr φbDSRing
29 eqid BaseU=BaseU
30 16 29 17 4 20 mplelf φF:DBaseU
31 3 subrgbas RSubRingSR=BaseU
32 6 subrgss RSubRingSRK
33 31 32 eqsstrrd RSubRingSBaseUK
34 12 33 syl φBaseUK
35 30 34 fssd φF:DK
36 35 ffvelcdmda φbDFbK
37 10 adantr φbDIV
38 11 adantr φbDSCRing
39 15 adantr φbDAKI
40 simpr φbDbD
41 4 6 7 8 37 38 39 40 evlsvvvallem φbDMiIbi×˙AiK
42 6 9 28 36 41 ringcld φbDFb·˙MiIbi×˙AiK
43 42 fmpttd φbDFb·˙MiIbi×˙Ai:DK
44 3 22 subrg0 RSubRingS0S=0U
45 12 44 syl φ0S=0U
46 45 oveq2d φFsupp0S=Fsupp0U
47 eqid 0U=0U
48 2 47 4 10 19 13 14 mhpdeg φFsupp0UgD|fld𝑠0g=N
49 48 5 sseqtrrdi φFsupp0UG
50 46 49 eqsstrd φFsupp0SG
51 fvexd φ0SV
52 35 50 27 51 suppssr φbDGFb=0S
53 52 oveq1d φbDGFb·˙MiIbi×˙Ai=0S·˙MiIbi×˙Ai
54 23 adantr φbDGSRing
55 eldifi bDGbD
56 55 41 sylan2 φbDGMiIbi×˙AiK
57 6 9 22 54 56 ringlzd φbDG0S·˙MiIbi×˙Ai=0S
58 53 57 eqtrd φbDGFb·˙MiIbi×˙Ai=0S
59 58 27 suppss2 φbDFb·˙MiIbi×˙Aisupp0SG
60 4 16 3 17 6 7 8 9 10 11 12 20 15 evlsvvvallem2 φfinSupp0SbDFb·˙MiIbi×˙Ai
61 6 22 24 27 43 59 60 gsumres φSbDFb·˙MiIbi×˙AiG=SbDFb·˙MiIbi×˙Ai
62 5 ssrab3 GD
63 62 a1i φGD
64 63 resmptd φbDFb·˙MiIbi×˙AiG=bGFb·˙MiIbi×˙Ai
65 64 oveq2d φSbDFb·˙MiIbi×˙AiG=SbGFb·˙MiIbi×˙Ai
66 21 61 65 3eqtr2d φQFA=SbGFb·˙MiIbi×˙Ai