Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsmhpvvval.q | |
|
evlsmhpvvval.p | |
||
evlsmhpvvval.u | |
||
evlsmhpvvval.d | |
||
evlsmhpvvval.g | |
||
evlsmhpvvval.k | |
||
evlsmhpvvval.m | |
||
evlsmhpvvval.w | |
||
evlsmhpvvval.x | |
||
evlsmhpvvval.i | |
||
evlsmhpvvval.s | |
||
evlsmhpvvval.r | |
||
evlsmhpvvval.n | |
||
evlsmhpvvval.f | |
||
evlsmhpvvval.a | |
||
Assertion | evlsmhpvvval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsmhpvvval.q | |
|
2 | evlsmhpvvval.p | |
|
3 | evlsmhpvvval.u | |
|
4 | evlsmhpvvval.d | |
|
5 | evlsmhpvvval.g | |
|
6 | evlsmhpvvval.k | |
|
7 | evlsmhpvvval.m | |
|
8 | evlsmhpvvval.w | |
|
9 | evlsmhpvvval.x | |
|
10 | evlsmhpvvval.i | |
|
11 | evlsmhpvvval.s | |
|
12 | evlsmhpvvval.r | |
|
13 | evlsmhpvvval.n | |
|
14 | evlsmhpvvval.f | |
|
15 | evlsmhpvvval.a | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 3 | ovexi | |
19 | 18 | a1i | |
20 | 2 16 17 10 19 13 14 | mhpmpl | |
21 | 1 16 17 3 4 6 7 8 9 10 11 12 20 15 | evlsvvval | |
22 | eqid | |
|
23 | 11 | crngringd | |
24 | 23 | ringcmnd | |
25 | ovex | |
|
26 | 4 25 | rabex2 | |
27 | 26 | a1i | |
28 | 23 | adantr | |
29 | eqid | |
|
30 | 16 29 17 4 20 | mplelf | |
31 | 3 | subrgbas | |
32 | 6 | subrgss | |
33 | 31 32 | eqsstrrd | |
34 | 12 33 | syl | |
35 | 30 34 | fssd | |
36 | 35 | ffvelcdmda | |
37 | 10 | adantr | |
38 | 11 | adantr | |
39 | 15 | adantr | |
40 | simpr | |
|
41 | 4 6 7 8 37 38 39 40 | evlsvvvallem | |
42 | 6 9 28 36 41 | ringcld | |
43 | 42 | fmpttd | |
44 | 3 22 | subrg0 | |
45 | 12 44 | syl | |
46 | 45 | oveq2d | |
47 | eqid | |
|
48 | 2 47 4 10 19 13 14 | mhpdeg | |
49 | 48 5 | sseqtrrdi | |
50 | 46 49 | eqsstrd | |
51 | fvexd | |
|
52 | 35 50 27 51 | suppssr | |
53 | 52 | oveq1d | |
54 | 23 | adantr | |
55 | eldifi | |
|
56 | 55 41 | sylan2 | |
57 | 6 9 22 54 56 | ringlzd | |
58 | 53 57 | eqtrd | |
59 | 58 27 | suppss2 | |
60 | 4 16 3 17 6 7 8 9 10 11 12 20 15 | evlsvvvallem2 | |
61 | 6 22 24 27 43 59 60 | gsumres | |
62 | 5 | ssrab3 | |
63 | 62 | a1i | |
64 | 63 | resmptd | |
65 | 64 | oveq2d | |
66 | 21 61 65 | 3eqtr2d | |