Metamath Proof Explorer


Theorem evlsmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q=IevalSubSR
evlsaddval.p P=ImPolyU
evlsaddval.u U=S𝑠R
evlsaddval.k K=BaseS
evlsaddval.b B=BaseP
evlsaddval.i φIZ
evlsaddval.s φSCRing
evlsaddval.r φRSubRingS
evlsaddval.a φAKI
evlsaddval.m φMBQMA=V
evlsaddval.n φNBQNA=W
evlsmulval.g ˙=P
evlsmulval.f ·˙=S
Assertion evlsmulval φM˙NBQM˙NA=V·˙W

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q=IevalSubSR
2 evlsaddval.p P=ImPolyU
3 evlsaddval.u U=S𝑠R
4 evlsaddval.k K=BaseS
5 evlsaddval.b B=BaseP
6 evlsaddval.i φIZ
7 evlsaddval.s φSCRing
8 evlsaddval.r φRSubRingS
9 evlsaddval.a φAKI
10 evlsaddval.m φMBQMA=V
11 evlsaddval.n φNBQNA=W
12 evlsmulval.g ˙=P
13 evlsmulval.f ·˙=S
14 eqid S𝑠KI=S𝑠KI
15 1 2 3 14 4 evlsrhm IZSCRingRSubRingSQPRingHomS𝑠KI
16 6 7 8 15 syl3anc φQPRingHomS𝑠KI
17 rhmrcl1 QPRingHomS𝑠KIPRing
18 16 17 syl φPRing
19 10 simpld φMB
20 11 simpld φNB
21 5 12 ringcl PRingMBNBM˙NB
22 18 19 20 21 syl3anc φM˙NB
23 eqid S𝑠KI=S𝑠KI
24 5 12 23 rhmmul QPRingHomS𝑠KIMBNBQM˙N=QMS𝑠KIQN
25 16 19 20 24 syl3anc φQM˙N=QMS𝑠KIQN
26 eqid BaseS𝑠KI=BaseS𝑠KI
27 ovexd φKIV
28 5 26 rhmf QPRingHomS𝑠KIQ:BBaseS𝑠KI
29 16 28 syl φQ:BBaseS𝑠KI
30 29 19 ffvelcdmd φQMBaseS𝑠KI
31 29 20 ffvelcdmd φQNBaseS𝑠KI
32 14 26 7 27 30 31 13 23 pwsmulrval φQMS𝑠KIQN=QM·˙fQN
33 25 32 eqtrd φQM˙N=QM·˙fQN
34 33 fveq1d φQM˙NA=QM·˙fQNA
35 14 4 26 7 27 30 pwselbas φQM:KIK
36 35 ffnd φQMFnKI
37 14 4 26 7 27 31 pwselbas φQN:KIK
38 37 ffnd φQNFnKI
39 fnfvof QMFnKIQNFnKIKIVAKIQM·˙fQNA=QMA·˙QNA
40 36 38 27 9 39 syl22anc φQM·˙fQNA=QMA·˙QNA
41 10 simprd φQMA=V
42 11 simprd φQNA=W
43 41 42 oveq12d φQMA·˙QNA=V·˙W
44 34 40 43 3eqtrd φQM˙NA=V·˙W
45 22 44 jca φM˙NBQM˙NA=V·˙W