Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsaddval.q | |
|
evlsaddval.p | |
||
evlsaddval.u | |
||
evlsaddval.k | |
||
evlsaddval.b | |
||
evlsaddval.i | |
||
evlsaddval.s | |
||
evlsaddval.r | |
||
evlsaddval.a | |
||
evlsaddval.m | |
||
evlsaddval.n | |
||
evlsmulval.g | |
||
evlsmulval.f | |
||
Assertion | evlsmulval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsaddval.q | |
|
2 | evlsaddval.p | |
|
3 | evlsaddval.u | |
|
4 | evlsaddval.k | |
|
5 | evlsaddval.b | |
|
6 | evlsaddval.i | |
|
7 | evlsaddval.s | |
|
8 | evlsaddval.r | |
|
9 | evlsaddval.a | |
|
10 | evlsaddval.m | |
|
11 | evlsaddval.n | |
|
12 | evlsmulval.g | |
|
13 | evlsmulval.f | |
|
14 | eqid | |
|
15 | 1 2 3 14 4 | evlsrhm | |
16 | 6 7 8 15 | syl3anc | |
17 | rhmrcl1 | |
|
18 | 16 17 | syl | |
19 | 10 | simpld | |
20 | 11 | simpld | |
21 | 5 12 | ringcl | |
22 | 18 19 20 21 | syl3anc | |
23 | eqid | |
|
24 | 5 12 23 | rhmmul | |
25 | 16 19 20 24 | syl3anc | |
26 | eqid | |
|
27 | ovexd | |
|
28 | 5 26 | rhmf | |
29 | 16 28 | syl | |
30 | 29 19 | ffvelcdmd | |
31 | 29 20 | ffvelcdmd | |
32 | 14 26 7 27 30 31 13 23 | pwsmulrval | |
33 | 25 32 | eqtrd | |
34 | 33 | fveq1d | |
35 | 14 4 26 7 27 30 | pwselbas | |
36 | 35 | ffnd | |
37 | 14 4 26 7 27 31 | pwselbas | |
38 | 37 | ffnd | |
39 | fnfvof | |
|
40 | 36 38 27 9 39 | syl22anc | |
41 | 10 | simprd | |
42 | 11 | simprd | |
43 | 41 42 | oveq12d | |
44 | 34 40 43 | 3eqtrd | |
45 | 22 44 | jca | |