Metamath Proof Explorer


Theorem evlsvar

Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015) (Proof shortened by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsvar.q Q=IevalSubSR
evlsvar.v V=ImVarU
evlsvar.u U=S𝑠R
evlsvar.b B=BaseS
evlsvar.i φIW
evlsvar.s φSCRing
evlsvar.r φRSubRingS
evlsvar.x φXI
Assertion evlsvar φQVX=gBIgX

Proof

Step Hyp Ref Expression
1 evlsvar.q Q=IevalSubSR
2 evlsvar.v V=ImVarU
3 evlsvar.u U=S𝑠R
4 evlsvar.b B=BaseS
5 evlsvar.i φIW
6 evlsvar.s φSCRing
7 evlsvar.r φRSubRingS
8 evlsvar.x φXI
9 eqid ImPolyU=ImPolyU
10 eqid S𝑠BI=S𝑠BI
11 eqid algScImPolyU=algScImPolyU
12 eqid xRBI×x=xRBI×x
13 eqid xIgBIgx=xIgBIgx
14 1 9 2 3 10 4 11 12 13 evlsval2 IWSCRingRSubRingSQImPolyURingHomS𝑠BIQalgScImPolyU=xRBI×xQV=xIgBIgx
15 5 6 7 14 syl3anc φQImPolyURingHomS𝑠BIQalgScImPolyU=xRBI×xQV=xIgBIgx
16 15 simprrd φQV=xIgBIgx
17 16 fveq1d φQVX=xIgBIgxX
18 eqid BaseImPolyU=BaseImPolyU
19 3 subrgring RSubRingSURing
20 7 19 syl φURing
21 9 2 18 5 20 mvrf2 φV:IBaseImPolyU
22 21 ffnd φVFnI
23 fvco2 VFnIXIQVX=QVX
24 22 8 23 syl2anc φQVX=QVX
25 fveq2 x=Xgx=gX
26 25 mpteq2dv x=XgBIgx=gBIgX
27 ovex BIV
28 27 mptex gBIgXV
29 26 13 28 fvmpt XIxIgBIgxX=gBIgX
30 8 29 syl φxIgBIgxX=gBIgX
31 17 24 30 3eqtr3d φQVX=gBIgX