Metamath Proof Explorer


Theorem explecnv

Description: A sequence of terms converges to zero when it is less than powers of a number A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses explecnv.1 Z=M
explecnv.2 φFV
explecnv.3 φM
explecnv.5 φA
explecnv.4 φA<1
explecnv.6 φkZFk
explecnv.7 φkZFkAk
Assertion explecnv φF0

Proof

Step Hyp Ref Expression
1 explecnv.1 Z=M
2 explecnv.2 φFV
3 explecnv.3 φM
4 explecnv.5 φA
5 explecnv.4 φA<1
6 explecnv.6 φkZFk
7 explecnv.7 φkZFkAk
8 eqid ifM00M=ifM00M
9 0z 0
10 ifcl 0MifM00M
11 9 3 10 sylancr φifM00M
12 4 recnd φA
13 12 5 expcnv φn0An0
14 1 fvexi ZV
15 14 mptex nZFnV
16 15 a1i φnZFnV
17 nn0uz 0=0
18 1 17 ineq12i Z0=M0
19 uzin M0M0=ifM00M
20 3 9 19 sylancl φM0=ifM00M
21 18 20 eqtr2id φifM00M=Z0
22 21 eleq2d φkifM00MkZ0
23 22 biimpa φkifM00MkZ0
24 23 elin2d φkifM00Mk0
25 oveq2 n=kAn=Ak
26 eqid n0An=n0An
27 ovex AkV
28 25 26 27 fvmpt k0n0Ank=Ak
29 24 28 syl φkifM00Mn0Ank=Ak
30 4 adantr φkifM00MA
31 30 24 reexpcld φkifM00MAk
32 29 31 eqeltrd φkifM00Mn0Ank
33 23 elin1d φkifM00MkZ
34 2fveq3 n=kFn=Fk
35 eqid nZFn=nZFn
36 fvex FkV
37 34 35 36 fvmpt kZnZFnk=Fk
38 33 37 syl φkifM00MnZFnk=Fk
39 33 6 syldan φkifM00MFk
40 39 abscld φkifM00MFk
41 38 40 eqeltrd φkifM00MnZFnk
42 33 7 syldan φkifM00MFkAk
43 42 38 29 3brtr4d φkifM00MnZFnkn0Ank
44 39 absge0d φkifM00M0Fk
45 44 38 breqtrrd φkifM00M0nZFnk
46 8 11 13 16 32 41 43 45 climsqz2 φnZFn0
47 37 adantl φkZnZFnk=Fk
48 1 3 2 16 6 47 climabs0 φF0nZFn0
49 46 48 mpbird φF0